Math, asked by YOMAN5436, 5 months ago

the sum of the two digit number is 15 if the number formed by reversing the digits is less than the original number by 27 find the original number

Answers

Answered by gayatri8111
0

Answer:

Let tens digit of the original number be xso original number,10(x) + If the number formed by reversing the digits is less than the original number by 27 find the original number  or 10x + 10x + 15 - 150 -x - x = 27 digits be x and (15-x), If you work it out you find that the sum of x and (15-x) is nothing but 15.

Step-by-step explanation:

Answered by krishi52
0

Step-by-step explanation:

let tens digit of the original number be x

let tens digit of the original number be xso original number,

let tens digit of the original number be xso original number,10(x) + (15-x)

let tens digit of the original number be xso original number,10(x) + (15-x)reversing digits mean

let tens digit of the original number be xso original number,10(x) + (15-x)reversing digits mean10(15-x) + x

let tens digit of the original number be xso original number,10(x) + (15-x)reversing digits mean10(15-x) + xtherefore

let tens digit of the original number be xso original number,10(x) + (15-x)reversing digits mean10(15-x) + xtherefore[10(x) + (15-x)]-[10(15-x)+x] = 27 =

let tens digit of the original number be xso original number,10(x) + (15-x)reversing digits mean10(15-x) + xtherefore[10(x) + (15-x)]-[10(15-x)+x] = 27 =or 10x + 15-x - 150+10x-x = 27

let tens digit of the original number be xso original number,10(x) + (15-x)reversing digits mean10(15-x) + xtherefore[10(x) + (15-x)]-[10(15-x)+x] = 27 =or 10x + 15-x - 150+10x-x = 27or 10x + 10x + 15 - 150 -X - X = 27

let tens digit of the original number be xso original number,10(x) + (15-x)reversing digits mean10(15-x) + xtherefore[10(x) + (15-x)]-[10(15-x)+x] = 27 =or 10x + 15-x - 150+10x-x = 27or 10x + 10x + 15 - 150 -X - X = 27or 20x - 135 -2x = 27

let tens digit of the original number be xso original number,10(x) + (15-x)reversing digits mean10(15-x) + xtherefore[10(x) + (15-x)]-[10(15-x)+x] = 27 =or 10x + 15-x - 150+10x-x = 27or 10x + 10x + 15 - 150 -X - X = 27or 20x - 135 -2x = 27or 18x - 135 = 27

let tens digit of the original number be xso original number,10(x) + (15-x)reversing digits mean10(15-x) + xtherefore[10(x) + (15-x)]-[10(15-x)+x] = 27 =or 10x + 15-x - 150+10x-x = 27or 10x + 10x + 15 - 150 -X - X = 27or 20x - 135 -2x = 27or 18x - 135 = 27or 18x = 27 + 135or

18x = 27 + 135

18x = 27 + 135or 18x = 162

18x = 27 + 135or 18x = 162or x = 162/18

18x = 27 + 135or 18x = 162or x = 162/18or x = 9

18x = 27 + 135or 18x = 162or x = 162/18or x = 9original number = 10(x) + (15-x) =

18x = 27 + 135or 18x = 162or x = 162/18or x = 9original number = 10(x) + (15-x) == 10(9) + (15-9) =

18x = 27 + 135or 18x = 162or x = 162/18or x = 9original number = 10(x) + (15-x) == 10(9) + (15-9) == 90+6

18x = 27 + 135or 18x = 162or x = 162/18or x = 9original number = 10(x) + (15-x) == 10(9) + (15-9) == 90+6= 96

Similar questions