Math, asked by Aayushijoshi3879, 8 months ago

.The sum of the two digits number is 8.the number obtained by interchanging the digits exceeds original number by 18,so what is the original number (descriptive)

Answers

Answered by MaIeficent
13

Step-by-step explanation:

\bf\underline{\underline{\red{Given:-}}}

  • The sum of the two digits number is 8.

  • The number obtained by interchanging the digits exceeds original number by 18.

\bf\underline{\underline{\blue{To\:Find:-}}}

  • The original number.

\bf\underline{\underline{\green{Solution:-}}}

\sf Let\: the \: tens\: digit\: of \: the \: number \: be \: x

\sf And, \: the \: units\: digit\: of \: the \: number \: be \: y

\sf The\: original \: number = 10x + y

\sf The\: number \: obtained \: by \: interchanging \: the \: digits = 10y + x

\bf\underline{\pink{Case\: 1:-}}

The sum of the two digits number is 8.

\sf \implies x + y = 8..…..(i)

\bf\underline{\orange{Case\: 2:-}}

The number obtained by interchanging the digits exceeds original number by 18.

\sf Reversed\: number - Original\: number = 18

\sf \implies 10y + x - (10x + y) = 18

\sf \implies 10y + x - 10x - y = 18

\sf \implies 9y - 9x = 18

\sf Divide\: the \: equation \: by \: 9

\sf \implies y - x = 2......(ii)

\underline{\sf Adding \: equations\: (i) \: and \: (ii)}

\sf \implies x + y + y - x = 2 + 8

\sf \implies 2y = 10

\sf \implies y = 5

\underline{\sf Substituting\: y = 5\: in \: equation\: (i)}

\sf \implies x + y = 8

\sf \implies x + 5 = 8

\sf \implies x = 8 - 5

\sf \implies x = 3

\sf The \: original \: number = 10x + y

\sf = 10(3) + 5

\sf = 30 + 5

\sf = 35

\large\underline{\boxed{\purple{\rm \therefore The \: original \: number = 35}}}

Similar questions