Math, asked by jethwaarjun1311, 1 year ago

The sum of the two digits of a two digit no is 15 and the difference between the two digits of tge two digit number is 3 .what is the product of the two digits of the two digit number?

Answers

Answered by Anonymous
5
Let the two digits be x and y respectively.

Then,

➡ x + y = 15. ............. (1)
➡ x - y = 3.. .............(2)
-----------------
➡ 2x = 18

➡ x = 18/2 = 9

Putting the value of x in eq (1),

➡ x +y = 15

➡ 9 + y = 15

➡ y = 15 - 9 = 6.

So,

x = 9 and y = 6

Now,

Product of the digits = 9× 6 = 54.

Required answer is 54.
Answered by Anonymous
11

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • The sum of the two digits of a two digit no is 15

 \:\:

  • Difference between the two digits of the two digit number is 3

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • Product of the two digits of the two digit number

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let the tens digit be 'x'

Let the ones digit be 'y'

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

\purple\longrightarrow  \sf x + y = 15 -------(1)

 \:\:

Also,

 \:\:

\purple\longrightarrow  \sf x - y = 3 -------(2)

 \:\:

 \underline{\bold{\texttt{Adding (1) And (2)}}}

 \:\:

 \sf \longmapsto x + y + x - y = 3 + 15

 \:\:

 \sf \longmapsto 2x = 18

 \:\:

 \sf \longmapsto x = \dfrac { 18 } { 2 }

 \:\:

 \bf \dashrightarrow x = 9

 \:\:

 \underline{\bold{\texttt{Putting x = 9 in (1)}}}

 \:\:

 \sf \longmapsto 9 + y = 15

 \:\:

 \bf \dashrightarrow y = 6

 \:\:

 \underline{\bold{\texttt{Product of digits :}}}

 \:\:

\purple\longrightarrow  \sf 9 \times 6

 \:\:

 \red{\bold{Product \: of \: digits \: = \: 54 \: }}

\rule{200}5

Similar questions