Math, asked by benchogamerz01, 6 months ago

The sum of the two digits of a two-digit
number is 12. The number obtained by
interchanging the two digits exceeds
the given number by 18. Find the
number.

Answers

Answered by MaIeficent
8

Step-by-step explanation:

\bf\underline{\underline{\red{Given:-}}}

  • The sum of digits of a two digit number is 12.

  • The number obtained by interchanging the two digits exceeds the given number by 18.

\bf\underline{\underline{\blue{To\:Find:-}}}

  • The original number.

\bf\underline{\underline{\green{Solution:-}}}

Let the tens digit of the number be x

And units digit of the number of y

Then:-

The original number = 10x + y

The number obtained by interchanging the digits = 10y + x

Case 1:-

\rm The\: sum\: of \: the \: digits\: is\: 12

\rm x + y = 12......(i)

Case 2:-

The number obtained by interchanging the two digits exceeds the given number by 18.

\rm Reversed\: number - Original \: number = 18

\rm \implies 10y + x  - (10x + y) = 18

\rm \implies 10y + x - 10x - y = 18

\rm \implies 9y - 9x =  18

Dividing the whole equation by 9

\rm \implies \dfrac{9y}{9} - \dfrac{9x}{9} = \dfrac{18}{9}

\rm \implies y - x =  2.....(ii)

Adding equations (i) and (ii)

\rm \implies x + y + (y - x) = 12 + 2

\rm \implies x + y + y - x = 14

\rm \implies 2y = 14

\rm \implies y = \dfrac{14}{2} = 7

Substituting y = 7 in equation (i)

\rm \implies x + y = 12

\rm \implies x + 7 = 12

\rm \implies x = 12 - 7

\rm \implies x = 5

The original number = 10x + y

= 10(5)+ (7)

= 50 + 7

= 57

\underline{\boxed{\purple{\rm \therefore The \: original \: number = 57}}}

Similar questions