Math, asked by sudhanmad125, 2 months ago

The sum of the value of Alpha, Beta & Gamma is 111. The average value of Beta, Gamma, Delta & Epsilon is 48 and the average value of Beta, Gamma &
Epsilon is 52. If the value of Epsilon is 72 then what is the average value of Alpha, Delta & Epsilon.
OPTIONS
a.
48
b.
52
w
C. 50
d
45​

Answers

Answered by mathdude500
3

Given that :-

 \red{\rm :\longmapsto\: \alpha  +  \beta   + \gamma  = 111}

\red{\rm :\longmapsto\: Average \: of \: \beta,  \gamma,\delta \: and \in \: is \:48 }

\red{\rm :\longmapsto\: Average \: of \: \beta,  \gamma\: and \in \: is \:52 }

\red{\rm :\longmapsto\:   \in \:  =  \:72 }

To find :-

\blue{\bf :\longmapsto\: Average \: of \: \alpha,\delta \: and \in }

Formula Used :-

\boxed{ \sf \:Average = \dfrac{Sum \: of \: observations}{Number \: of \: observations}}

Solution :-

We have

 \red{\bf :\longmapsto\: \alpha  +  \beta   + \gamma  = 111} -  -  - (1)

Also,

\red{\rm :\longmapsto\: Average \: of \: \beta,  \gamma,\delta \: and \in \: is \:48 }

\rm :\longmapsto\:\dfrac{ \beta  +  \gamma  +  \delta +  \in}{4}  = 48

 \red{\rm :\longmapsto\: \beta  +  \gamma  + \delta + \in = 192} -  -  - (2)

Also,

\red{\rm :\longmapsto\: Average \: of \: \beta,  \gamma\: and \in \: is \:52 }

\rm :\longmapsto\:\dfrac{ \beta  +  \gamma +  \in}{3}  = 52

 \red{\rm :\longmapsto\: \beta  +  \gamma  + \in = 156} -  -  - (3)

Now,

\red{\rm :\longmapsto\:   \in \:  =  \:72 }

So,

Equation (3) becomes,

{\rm :\longmapsto\: \beta  +  \gamma  + 72 = 156}

{\rm :\longmapsto\: \beta  +  \gamma= 156 - 72}

\boxed{\bf\implies \: \sf \: \beta  +  \gamma  = 84} -  -  - (4)

On substituting equation (3) in equation (2), we get

{\rm :\longmapsto\: \delta + 156= 192}

{\rm :\longmapsto\: \delta= 192 - 156}

\boxed{\bf\implies \: \sf \:\delta = 36} -  -  - (5)

On substituting equation (4) in equation (1), we get

{\bf :\longmapsto\: \alpha  +  84  = 111}

\boxed{\bf\implies \: \sf \: \alpha  = 27} -  -  - (6)

Now, we have

 \red{\rm :\longmapsto\: \alpha  = 27} \\  \red{\rm :\longmapsto\:\delta = 36} \\  \red{\rm :\longmapsto\:\in = 72}

Hence,

\blue{\bf :\longmapsto\: Average \: of \: \alpha,\delta \: and \in }

\rm \:  =  \:  \: \dfrac{ \alpha  + \delta + \in}{3}

\rm \:  =  \:  \: \dfrac{27 + 36 + 72}{3}

\rm \:  =  \:  \: \dfrac{135}{3}

 \blue{\rm \:  =  \:  \: 45}

Therefore,

\blue{\bf :\longmapsto\: Average \: of \: \alpha,\delta \: and \in \: is \: 45 }

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underbrace{ \boxed{ \bf \: Option \:  (d) \: is \: correct}}

Similar questions