Math, asked by qsyed9933, 8 months ago

The sum of the zeroes of the polynomial 2x^2-8x +6 is
(a) - 3 (b) 3 (c) - 4 (d) 4

Answers

Answered by ItzAditt007
18

Answer:-

Your Answer Is Option (d) 4.

Explanation:-

Given polynomial:-

 \\  \bf\longrightarrow 2 {x}^{2}  - 8x + 6.

To Find:-

  • The value of sum of zeroes.

Concept Used:-

In A quadratic polynomial,

▪︎ Sum of Zeroes = \bf-\dfrac{b}{a}.

where,

  • b = Coefficient of x.

  • a = Coefficient of x².

So Here,

  • b = -8.

  • a = 2.

Therefore,

Sum Of zereos

\\ \tt= -\dfrac{b}{a}.

\\ \tt = -\dfrac{(-8)}{2}.

\\ \tt = \dfrac{\cancel{8}}{\cancel{2}}.

\\ \huge\red{\boxed{\bf{\blue{ =4.}}}}

Therefore Sum Of Zeroes Is Equal To 8.

So The Final Answer Is Option (d).

Answered by Bᴇʏᴏɴᴅᴇʀ
6

Answer:-

\bf{Option \: D \: \: 4}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Given:-

2 {x}^{2} - 8x + 6

To Find:-

Value of Sum of Zeroes

Solution:-

We know that:-

\bf \boxed{Sum \: of \: Zeroes = \dfrac{-b}{a}}

here,

\bf{b} \: is \: Coefficient \: of \: x

\bf{a} \: is \: Coefficient \: of \: x^2

Therefore,

\bf{b = -8}

\bf{a = 2}

Hence,

Sum Of Zeroes:-

\implies {\dfrac{-b}{a}}

\implies {\dfrac{-(-8)}{2}}

\implies{\dfrac{8}{2}}

\implies \large{\cancel{\frac{8}{2}}}

\\ \large \bf{ =4}

Hence, Option D

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions