the sum of the zeros of x cube + b x square + 3 X + 2 equal to
Answers
Given two zeroes of a cubic polynomial ax
3
+bx
2
+cx+d
are zero, Let third zero be y
then sum of zeroes =
a
−b
⇒0+0+y=
a
−b
⇒y=
a
−b
here is your answer.
Answer:
a=1,b=+_2
Step-by-step explanation:
The given polynomial is x
3
−3x
2
+x+1
As (a−b),a and (a+b) are the zeros of the given polynomial
⇒(a−b)
3
−3(a−b)
2
+(a−b)+1=0 .....(1)
⇒a
3
−3a
2
+a+1=0 ....(2)
and (a+b)
3
−3(a+b)
2
+(a+b)+1=0 .....(3)
Putting a=1 in equation (2), we get
1−3+1+1=0 or 0=0
⇒ (2) is satisfied, when a=1
∴1 is a zero of the given polynomial
Putting a=1 in (1), we get
(1−b)
3
−3(1−b)
2
+(1−b)+1=0
⇒1−b
3
−3b+3b
2
−3(1−2b+b
2
)+1−b+1=0
⇒3−4b+3b
2
−b
3
−3+6b−3b
2
=0
⇒−b
3
+2b=0
⇒−b(b
2
−2)=0
Either b=0 or b
2
−2=0
But b can not be zero
∴b
2
=2
⇒b=±
2
Thus, a=1 and b=± 2