Math, asked by Papa4028, 1 year ago

The sum of third and seventh term of an A.P.is 6 and their product is 8.find the sum of 16th term of the A.p.

Answers

Answered by lalitgumber10
2

we know that Nth term is a + (n - 1)d

3rd term = a + (3 - 1)d = a + 2d

7th term = a + (7 - 1)d = a + 6d

sum of 3rd and 7th is 6

[a + 2d] + [a + 6d] = 6

a 2d + a + 6d = 6

2a + 8d = 6

2(a + 4d) = 6

a + 4d = 6/2 = 3

a = 3 - 4d .........(i)

their product = 8

[a + 2d]*[a + 6d] = 8

put the value of x from. (i)

[3 - 4d + 2d]*[3 - 4d + 6d] = 8

[3 - 2d]*[3 + 2d] = 8

3² - (2d)² = 8 ........[: (a+b)(a-b) =a²-b²]

9 - 4d² = 8

9 - 4d² - 8 = 0

9 - 8 - 4d² = 0

1 - 4d² = 0

1 = 4d²

1/4 = d²

d = +-(1/2)

put the value of d in (i)

a = 3 - 4d = 3 - 4(1/2) = 3 - 2 = 1

a = 3 - 4d = 3 -4(-1/2) = 3 -(-2) = 3+2 = 5

Hence,

according to a = 1,d = 1/2

16th term = a + 15d = 1 + 15(1/2) = 17/2

according to a = 5, d = -1/2

16th term = a + 15d = 5 + 15(-1/2)

= 5 - 7.5 = -2.5 = -5/2

Similar questions