Math, asked by sahidafirdous, 11 months ago

The sum of three alternate numbers are
3 less than 24. Find the numbers.​

Answers

Answered by Sauron
13

Answer:

The Numbers are - 6,7 and 8.

Step-by-step explanation:

Given :

Sum of 3 consecutive (alternate) numbers = 3 less than 24

To find :

The number

Solution :

Let the number be -

  • y
  • y + 1
  • y + 2

\bigstar \: \boxed{\sf{y + (y + 1) + (y + 2) = 24 \times 3}}

\sf{\implies} \: y + (y + 1) + (y + 2) = 24 - 3 \\  \\ \sf{\implies} \:3y + 3 = 21 \\  \\ \sf{\implies} \:3y = 21 - 3 \\  \\ \sf{\implies} \:3y = 18 \\  \\ \sf{\implies} \:y =  \dfrac{18}{3}  \\  \\ \sf{\implies} \:y = 6

One number = 6

\rule{300}{1.5}

\textsf{\underline{\underline{Value of (y + 1)}}}

\sf{\implies} \:y + 1 \\  \\ \sf{\implies} \:6 + 1 \\  \\ \sf{\implies} \:7

Second Number = 7

\rule{300}{1.5}

\textsf{\underline{\underline{Value of (y + 2)}}}

\sf{\implies} \:y + 2 \\  \\ \sf{\implies} \:6 + 2 \\  \\ \sf{\implies} \:8

Third number = 8

\therefore The Numbers are -

  • 6
  • 7
  • 8

\rule{300}{1.5}

\textbf{\underline{\underline{Verification :}}}

\sf{\implies} \:6 + 7 + 8 = 24 - 3 \\  \\ \sf{\implies} \:13 + 8 = 21 \\  \\ \sf{\implies} \:21 = 21

\therefore The Numbers are - 6,7 and 8.

Similar questions