the sum of three consecutive multiples of 11 is 330 find the multiples
Answers
Define x:
Let the smallest number be x
The 2nd number is x + 11
The 3rd number is x + 22
................................................................................................................
STEP 2: Form the equation:
The sum of these 3 numbers is 330
x + (x + 11) + ( x + 22) = 330
.................................................................................................................
STEP 3: Solve x:
x + (x + 11) + ( x + 22) = 330
x + x + 11 + x + 22 = 330
3x + 33 = 330
3x = 297
x = 99
.................................................................................................................
STEP 4: Find the numbers:
smallest number = x = 99
2nd number = 99 + 11 = 110
3rd number = 99 + 22 = 121
.................................................................................................................
Answer: the three numbers are 99, 110 and 121
Let us take the first number as ' x '
Then the second number would be ' x + 11 '
Third number would be ' x + 22 '
Their sum is equal to 330
x + x + 11 + x + 22 = 330
3x + 33 = 330
3x = 330 - 33
3x = 297
x = 297 ÷ 3
x = 99
First number = 99
second number = 110
Third number = 121
#Together_We_Go_Far