Math, asked by Aryansharma09oct, 7 months ago

The sum of three consecutive multiples of 7 is 777. Find these multiples​

Answers

Answered by sahidkhan1992khan
6

Step-by-step explanation:

given,the three consecutive multiples of 7 will be of the form:

x,x+7 and x+14

Then according to the question,

x+x+7+x+14=777

3x+21=777

3x=756

x=

3

756

=252

Multiples are 252,259,266.

hope it works

Answered by Anonymous
2

AnswEr:

ɢɪɴ:

\quad\bullet\normalsize\sf\ Sum \: of \: three \: consecutive \\ \quad\normalsize\sf\ numbers \: is \: 777

ғɪɴ:

\quad\bullet\normalsize\sf\ Three \: Multiples

sʟɪɴ:

\underline{\bigstar\:\sf{According \: to \: given \: in \: question:}}

\normalsize\sf\ Let \: the \: 1st \: multiple \: be \: 7 \left( x \right)

\normalsize\sf\ Let \: the \: 2nd \: multiple \: be \: 7(x+1)

\normalsize\sf\ Let \: the \: 3rd \: multiple \: be \: 7(x+2)

Now;

\twoheadrightarrow\normalsize\sf\ 7(x) + 7(x + 1) + 7(x + 2)= 777

\twoheadrightarrow\normalsize\sf\ 7x + 7x + 7 + 7x + 14 = 777

\twoheadrightarrow\normalsize\sf\ 21x + 21 = 777

\twoheadrightarrow\normalsize\sf\ 21x = 777 - 21

\twoheadrightarrow\normalsize\sf\ 21x = 756</p><p>

\twoheadrightarrow\normalsize\sf\ x = \frac{\cancel{756}}{\cancel{21}}

\twoheadrightarrow\normalsize\sf\ x = 36

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\normalsize\sf\ The \: 1st \: multiple \: = \: 7 \left( x \right)

\dashrightarrow\sf\ 7(x) = 7 \times\ x

\dashrightarrow\sf\ 7(x) =  7 \times\ 3

\dashrightarrow\sf\ 7(x) = 252

\normalsize\sf\ The \: 2nd \: multiple \: = \: 7 \left( x + 1 \right)

\dashrightarrow\sf\ 7(x+1) = 7 \times\ x + 7 \times\ 1

\dashrightarrow\sf\ 7(x +1)  = 7 \times\ 36 + 7

\dashrightarrow\sf\ 7(x + 1) = 259

\normalsize\sf\ The \: 3rd \: multiple \: = \: 7 \left( x + 2 \right)

\dashrightarrow\sf\ 7(x+2) = 7 \times\ x + 7 \times\ 2

\dashrightarrow\sf\ 7(x+2) = 7 \times\ 36 + 14

\dashrightarrow\sf\ 7x = 266

\maltese\:\underline{\textsf{Hence,\: multiples \: are}{\textbf{\: 252,259 \&amp; 266}}}

Similar questions