Math, asked by deekshitha6874, 1 year ago

The sum of three consecutive multiples of 7is 777. find these multiples

Answers

Answered by pinakimandal53
4
Let the three consecutive multiples of 7 be 7x(7x+7) and (7x+14)
According to the question, the sum of the consecutive multiples of 7 is 777. 
Now, solve for x in the equation. 
7x + (7x+7) + (7x+14) = 777
7x+7x+7+7x+14 = 777                           [Removing the brackets. ]
7x+7x+7x+7+14 = 777                           [Arranging the like terms together. ]
21x+21 = 777                                         [Adding the like terms on the left hand side. ]
21x+21-21 = 777-21                               [Subtracting both sides by 21. ]
21x = 756                                               [Simplifying. ]
 \frac{21x}{21} = \frac{756}{21}               [Dividing both sides by 21. ]
x = 36                                                     [Simplifying. ]

7x = 7(36) = 252
(7x+7) = [7(36)+7] = (252 + 7) = 259
(7x+14) = [7(36)+14] = (252 + 14) = 266
∴ The three consecutive multiples of 7 are 252, 259 and 266. 

Very simple, of course. 

Hope this may help you. 

If you have any doubt, then you can ask me in the comments. 

Answered by BrainlyKingdom
0

Numbers are 252, 259, 266

Given : Sum of Three Consecutive Multiples of 7 is 777

To Find : Three Numbers

Step By Step Explanation :

The Three consecutive multiples of 7 will be \textsf{x, x + 7} and \textsf{x + 14}. As their Sum is 777, We can write it as follows :

\longrightarrow\textsf{x + (x + 7) + (x + 14) = 777}

\longrightarrow\textsf{x + x + 7 + x + 14 = 777}

\longrightarrow\textsf{3x + 7 + 14 = 777}

\longrightarrow\textsf{3x + 21 = 777}

\longrightarrow\textsf{3x + 21 - 21 = 777 - 21}

\longrightarrow\textsf{3x = 756}

\longrightarrow\textsf{x = 756/3}

\longrightarrow\textbf{x = 252}

  • Now Three Numbers are \textsf{x, x + 7} and \textsf{x + 14}. Substitute the value of x in each and we get 252, 259, 266.

Therefore, Numbers are 252, 259, 266

Similar questions