the sum of three consecutive multiples of 8 is 792 .find these multiples.
Answers
Let the first multiple of 8 be " 8x "
So , Consecutive multiples of 8 be " 8 ( x + 1 ) " and " 8 ( x + 2 ) "
According to the given condition ,
" Sum of these multiples is 792 "
⇒ 8 x + 8 ( x + 1 ) + 8 ( x + 2 ) = 792
⇒ 8 x + 8 x + 8 + 8 x + 16 = 792
⇒ 24 x + 24 = 792
⇒ 24 x = 792 - 24
⇒ 24 x = 768
⇒ x = 32
So ,
→ First multiple = 8 x
= 8 ( 32 )
= 256
→ Second multiple = 8 ( x + 1 )
= 8(32+1)
= 264
→ Third multiple = 8 ( x + 2 )
= 8 ( x + 2 )
= 272
QUESTION :-
the sum of three consecutive multiples of 8 is 792 .find these multiples.
SOLUTION :-
Let the first multiple of 8 be " 8x "
So , Consecutive multiples be " 8(x+1) " and " 8(x+2) "
Sum of these multiples is 792 ,
⇒ 8x + 8(x+1) + 8(x+2) = 792
⇒ 8x + 8x + 8 + 8x + 16 = 792
⇒ 24x + 24 = 792
⇒ 24x = 768
⇒ x = 32