Math, asked by ramniwas1490, 7 months ago

the sum of three consecutive multiples of 8 is 792 .find these multiples.​

Answers

Answered by BrainlyIAS
21

Let the first multiple of 8 be " 8x "

So , Consecutive multiples of 8 be " 8 ( x + 1 ) " and " 8 ( x + 2 ) "

According to the given condition ,

" Sum of these multiples is 792 "

⇒ 8 x + 8 ( x + 1 ) + 8 ( x + 2 ) = 792

⇒ 8 x + 8 x + 8 + 8 x + 16 = 792

⇒ 24 x + 24 = 792

⇒ 24 x = 792 - 24

⇒ 24 x = 768

x = 32  \pink{\bigstar}

So ,

→ First multiple = 8 x

                     = 8 ( 32 )

                     = 256  \orange{\bigstar}

→ Second multiple = 8 ( x + 1 )

                           = 8(32+1)

                           = 264  \bigstar

→ Third multiple = 8 ( x + 2 )

                       = 8 ( x + 2 )

                       = 272  \green{\bigstar}

Answered by srikanthn711
12

QUESTION :-

the sum of three consecutive multiples of 8 is 792 .find these multiples.

SOLUTION :-

Let the first multiple of 8 be " 8x "

So , Consecutive multiples be " 8(x+1) " and " 8(x+2) "

Sum of these multiples is 792 ,

⇒ 8x + 8(x+1) + 8(x+2) = 792

⇒ 8x + 8x + 8 + 8x + 16 = 792

⇒ 24x + 24 = 792

⇒ 24x = 768

⇒ x = 32

First multiple = 8(32) = 256

Second multiple = 8(32+1) = 264

Third multiple = 8(x+2) = 272

Similar questions