Math, asked by Samiksha992, 1 month ago

The sum of three consecutive multiples of 8 is 888.Find the multiples.​

Answers

Answered by Animegirl98
1

Answer:

I hope it is useful for you I m happy if it is useful for you

Attachments:
Answered by Anonymous
83

☯Let the three Consecutive multiples of 8 be 8x,8(x + 1) and 8(x + 2).

{\underline{\boldsymbol{\pink{According~ to~ the~ question~ :}}}}

8x + 8(x + 1) + 8(x + 2) = 888

\sf{8(x + x + 1 + x + 2) = 888 \{taking \: 8 \: as \: common \}}

:\implies\sf{8(3x+3)=888}

\\

:\implies\sf{3x+3=888/8}

\\

:\implies\sf{3x=111-3}

\\

:\implies\sf{3x=108}

\\

:\implies\sf{x=108/3}

\\

:\implies{\boxed{\frak{\purple{x=36}}}}

\\

Thus,the three consecutive multiples of 8 are :

  • {\underline{\frak{\purple{8x=8 × 36=288}}}}

\\

  • {\underline{\frak{\purple{8(x+1)=8 × (36+1)=8×37=296}}}}

\\

  • {\underline{\frak{\purple{8(x+2)=8×(36+2)=8×38=304}}}}

\\

 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\underline{\textsf{\textbf{Hence,Solved!!!!}}}}

Similar questions