Math, asked by jazeenahilar, 9 months ago

The sum of three consecutive natural numbers is 225. Find the numbers

Answers

Answered by Anonymous
8

\sf\red{\underline{\underline{Answer:}}}

\sf{Numbers \ are \ 74, \ 75 \ and \ 76.}

\sf\orange{Given:}

\sf{\implies{Sum \ of \ three \ consecutive \ natural}}

\sf{numbers \ is \ 225.}

\sf\pink{To \ find:}

\sf{The \ numbers.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ the \ three \ consecutive \ numbers \ be}

\sf{(n-1), \ n \ and \ (n+1)}

\sf{According \ to \ the \ given \ condition.}

\sf{(n-1)+n+(n+1)=225}

\sf{\therefore{3n=225}}

\sf{\therefore{n=\frac{225}{3}}}

\boxed{\sf{\therefore{n=75}}}

\sf{Numbers \ are:}

\sf{(n-1)=75-1=74,}

\sf{n=75,}

\sf{(n+1)=75+1=76.}

\sf\purple{\tt{\therefore{Numbers \ are \ 74, \ 75 \ and \ 76.}}}

Answered by Anonymous
5

Given ,

The sum of three consecutive natural numbers is 225

Let , the three consecutive natural numbers be x , x + 1 , x + 2

According to the question ,

\sf \Rightarrow x + x + 1 + x + 2 = 225 \\  \\\sf \Rightarrow  3x + 3 = 225 \\  \\\sf \Rightarrow  3x = 222 \\  \\\sf \Rightarrow  x =  \frac{222}{3}  \\  \\\sf \Rightarrow  x = 74

 \therefore \sf \bold{ \underline{The \:  numbers  \: are  \: 74  \: , \:  75 \:  and \:  76 }}

Similar questions