Math, asked by rajannaraju4840, 3 months ago

The sum of three consecutive terms in an AP is 6 and their product is -120.
Find the three numbers.

Answers

Answered by varadad25
5

Answer:

The three consecutive terms of the AP are either - 6, 2 & 10 or 10, 2 & - 6.

Step-by-step-explanation:

Let the first term of the AP be "a" and common difference be "d".

The three consecutive terms of the AP are a, a + d & a + 2d.

From the first condition,

a + ( a + d ) + ( a + 2d ) = 6

⇒ a + a + d + a + 2d = 6

⇒ a + a + a + d + 2d = 6

⇒ 3a + 3d = 6

⇒ a + d = 2 - - - [ Dividing both sides by 3 ]

⇒ a = 2 - d

a = - d + 2 - - - ( 1 )

From the second condition,

a ( a + d ) * ( a + 2d ) = - 120

⇒ ( - d + 2 ) * [ ( - d + 2 ) + d ] * [ ( - d + 2 ) + 2d ] = - 120 - - - [ From ( 1 ) ]

⇒ ( - d + 2 ) * ( - d + 2 + d ) * ( - d + 2 + 2d ) = - 120

⇒ ( - d + 2 ) * ( - d + d + 2 ) * ( - d + 2d + 2 ) = - 120

⇒ ( - d + 2 ) * ( 0 + 2 ) * ( d + 2 ) = - 120

⇒ ( - d + 2 ) * 2 * ( d + 2 ) = - 120

⇒ ( - d + 2 ) * ( d + 2 ) * 2 = - 120

⇒ [ ( 2 )² - ( - d)² ] * 2 = - 120 - - - [ ∵ ( a + b ) ( a - b ) = a² - b² ]

⇒ ( 4 - d² ) * 2 = - 120

⇒ 4 - d² = - 120 ÷ 2

⇒ - d² + 4 = - 60

⇒ - d² = - 60 - 4

⇒ - d² = - 64

⇒ d² = 64

d = ± 8

Now, by substituting d = 8 in equation ( 1 ), we get,

a = - d + 2 - - - ( 1 )

⇒ a = - 8 + 2

a = - 6

Now,

a + d = - 6 + 8

a + d = 2

Now,

a + 2d = - 6 + 2 * 8

⇒ a + 2d = - 6 + 16

a + 2d = 10

Now, by substituting d = - 8 in the equation ( 1 ), we get,

a = - d + 2 - - - ( 1 )

⇒ a = - ( - 8 ) + 2

⇒ a = 8 + 2

a = 10

Now,

a + d = 10 + ( - 8 )

⇒ a + d = 10 - 8

a + d = 2

Now,

a + 2d = 10 + 2 * ( - 8 )

⇒ a + 2d = 10 - 16

a + 2d = - 6

∴ The three consecutive terms of the AP are either - 6, 2 & 10 or 10, 2 & - 6.

Answered by pjgaikar06
2

The three consecutive terms of the AP are either - 6, 2 & 10 or 10, 2 & - 6.

Step-by-step-explanation:

Let the first term of the AP be "a" and common difference be "d".

The three consecutive terms of the AP are a, a + d & a + 2d.

From the first condition,

a + ( a + d ) + ( a + 2d ) = 6

⇒ a + a + d + a + 2d = 6

⇒ a + a + a + d + 2d = 6

⇒ 3a + 3d = 6

⇒ a + d = 2 - - - [ Dividing both sides by 3 ]

⇒ a = 2 - d

⇒ a = - d + 2 - - - ( 1 )

From the second condition,

a ( a + d ) * ( a + 2d ) = - 120

⇒ ( - d + 2 ) * [ ( - d + 2 ) + d ] * [ ( - d + 2 ) + 2d ] = - 120 - - - [ From ( 1 ) ]

⇒ ( - d + 2 ) * ( - d + 2 + d ) * ( - d + 2 + 2d ) = - 120

⇒ ( - d + 2 ) * ( - d + d + 2 ) * ( - d + 2d + 2 ) = - 120

⇒ ( - d + 2 ) * ( 0 + 2 ) * ( d + 2 ) = - 120

⇒ ( - d + 2 ) * 2 * ( d + 2 ) = - 120

⇒ ( - d + 2 ) * ( d + 2 ) * 2 = - 120

⇒ [ ( 2 )² - ( - d)² ] * 2 = - 120 - - - [ ∵ ( a + b ) ( a - b ) = a² - b² ]

⇒ ( 4 - d² ) * 2 = - 120

⇒ 4 - d² = - 120 ÷ 2

⇒ - d² + 4 = - 60

⇒ - d² = - 60 - 4

⇒ - d² = - 64

⇒ d² = 64

⇒ d = ± 8

Now, by substituting d = 8 in equation ( 1 ), we get,

a = - d + 2 - - - ( 1 )

⇒ a = - 8 + 2

⇒ a = - 6

Now,

a + d = - 6 + 8

⇒ a + d = 2

Now,

a + 2d = - 6 + 2 * 8

⇒ a + 2d = - 6 + 16

⇒ a + 2d = 10

Now, by substituting d = - 8 in the equation ( 1 ), we get,

a = - d + 2 - - - ( 1 )

⇒ a = - ( - 8 ) + 2

⇒ a = 8 + 2

⇒ a = 10

Now,

a + d = 10 + ( - 8 )

⇒ a + d = 10 - 8

⇒ a + d = 2

Now,

a + 2d = 10 + 2 * ( - 8 )

⇒ a + 2d = 10 - 16

⇒ a + 2d = - 6

∴ The three consecutive terms of the AP are either - 6, 2 & 10 or 10, 2 & - 6.

Similar questions