Math, asked by NandaCHiremath, 1 year ago

the sum of three consecutive terms in AP is 6 and their product is -125 find the three numbers​

Answers

Answered by ihrishi
3

Step-by-step explanation:

Let the three consecutive nos in AP be (a-d), a, (a+d).

Now, condition 1:

(a-d) + a + (a+d) = 6

3a = 6

a = 6/3

a = 2

Next, condition 2:

(a-d) x a x (a+d) = - 125

a \times ( {a}^{2}  -  {d}^{2} ) =  - 125 \\ 2( {2}^{2}  -  {d}^{2} ) =  - 125 \\ 4 -  {d}^{2}   = \:  \frac{ - 125}{2}  \\ 4 +  \frac{125}{2}  =  {d}^{2}  \\  \frac{133}{2}  = {d}^{2} \:  \\ d \:  =  \sqrt{ \frac{133}{2} }  \\ a - d \:  = 2 -  \sqrt{ \frac{133}{2} }  \:   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sqrt{4}  -  \sqrt{ \frac{133}{2} }  \\  =  \frac{ \sqrt{8}  -  \sqrt{133} }{2}  \\ a \:  = 2 \\ a  +  d \:  = 2  +   \sqrt{ \frac{133}{2} }  \:   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sqrt{4}   +   \sqrt{ \frac{133}{2} }  \\  =  \frac{ \sqrt{8}   +   \sqrt{133} }{2} \\ hence \: the \: three \: consecutive \: \\  numbers \: in \: AP \: are \: \frac{ \sqrt{8}     -   \sqrt{133} }{2},  \\ \: 2 \: and \: \frac{ \sqrt{8}      +    \sqrt{133} }{2} \:

Similar questions