Math, asked by dilip7269, 8 months ago

the sum of three consecutive terms in ap is 6 and their products is -120 find the three numbers ( hint let 3 numbers be a-d ,a,a+d​

Answers

Answered by ishaa2222
48

In AS( arithmetic sequence ),

ғɪʀsᴛ ᴛᴇʀᴍ = ᴀ

ᴄᴏᴍᴍᴏɴ ᴅɪғғᴇʀᴇɴᴄᴇ = ᴅ

sᴇᴄᴏɴᴅ ᴛᴇʀᴍ = ᴀ₂ = ᴀ + ᴅ

ᴛʜɪʀᴅ ᴛᴇʀᴍ = ᴀ₃ = ᴀ + 2ᴅ

xᴛʜ ᴛᴇʀᴍ = ᴀₓ = ᴀ + ( x - 1 )ᴅ

--------------------------------------------------

ʟᴇᴛ ᴛʜᴇ ᴄᴏɴsᴇᴄᴜᴛɪᴠᴇ ᴛᴇʀᴍs ᴏғ ᴀs ʙᴇ ( ᴀ - ᴅ ) , ᴀ , ( ᴀ + ᴅ ).

In the question it is given that the sum of the consecutive terms of that AS is 12.

⇒ ( ᴀ - ᴅ ) + ᴀ + ( ᴀ + ᴅ ) = 12

⇒ ᴀ - ᴅ + ᴀ + ᴀ + ᴅ = 12

⇒ ᴀ + ᴀ + ᴀ - ᴅ + ᴅ = 12

⇒ 3ᴀ = 12

⇒ ᴀ = 12 / 3

⇒ ᴀ = 4

Also given that the product of the same terms in the AS is 48.

⇒ ( ᴀ - ᴅ ) ( ᴀ ) ( ᴀ + ᴅ ) = 48

⇒ ( ᴀ - ᴅ ) ( ᴀ + ᴅ ) ᴀ = 48

⇒ ( ᴀ^2 - ᴅ^2 ) ᴀ = 48

sᴜʙsᴛɪᴛᴜᴛɪɴɢ ᴛʜᴇ ᴠᴀʟᴜᴇ ᴏғ ᴀ :

⇒ ( 4^2 - ᴅ^2 ) 4 = 48

⇒ 16 - ᴅ^2 = 48 / 4

⇒ 16 - ᴅ^2 = 12

⇒ 16 - 12 = ᴅ^2

⇒ 4 = ᴅ^2

⇒ \ᴘᴍ 2 = ᴅ±2=ᴅ

⇒ 2 ᴏʀ - 2 = ᴅ

ɴᴏᴡ, ᴛʜᴇʀᴇ ᴀʀᴇ ᴛᴡᴏ ᴠᴀʟᴜᴇs ᴏғ ᴅ ᴏʀ ᴄᴏᴍᴍᴏɴ ᴅɪғғᴇʀᴇɴᴄᴇ, sᴜʙsᴛɪᴛᴜᴛɪɴɢ ʙᴏᴛʜ ᴛʜᴇ ᴠᴀʟᴜᴇs ᴏғ ᴅ ɪɴ ᴛᴇʀᴍs ᴏғ ᴀᴘ ᴏɴᴇ ʙʏ ᴏɴᴇ.

If we take the value of d equal to 2. Arithmetic progressions are :

ᴀ - ᴅ = 4 - 2 = 2

ᴀ = 4

ᴀ + ᴅ = 4 + 2 = 6

If we take the value of d equal to - 2. Arithmetic progressions are :

ᴀ - ᴅ = 4 - ( - 2 ) = 4 + 2 = 6

ᴀ = 4

ᴀ + ᴅ = 4 + ( - 2 ) = 4 - 2 = 2

Answered by karthik6079
6

Answer:

3

Step-by-step explanation:

(a-d) +a +(a+d) =6

now remove the brackets

a-d+a+a+d=6

-d+d are striked

a+a+a =6

3a=6

a=6/3

a=2

(a-d)*a*(a+d) =120

let a be 2

(2-d)*2*(2+d)=120

(2-d)(2+d)*2=120

4 +2d -2d +dd =120

4+dd=120

dd=120-4

√dd=116

Similar questions