the sum of three consecutive terms of an ap is 21 and the sum of the squares of these terms is 165 find these terms
Answers
Answered by
8
a-d, a, a+d are in ap
sum=21
a-d +a+a+d=21
3a=21
a=7
(a-d) ^2 + a^2 +(a+d)^2=165
a^2 +d^2-2ad + a^2 + a^2+d^2 + 2ad=165
3a^2+2d^2=165
3(7)^2 + 2d^2=165
3(49) +2d^2=165
2d^2=165-147
2d^2=18
d^2=9
d=3
a-d =7-3=4
a=7
a+d = 7+3=10
numbers are 4,7,10
sum=21
a-d +a+a+d=21
3a=21
a=7
(a-d) ^2 + a^2 +(a+d)^2=165
a^2 +d^2-2ad + a^2 + a^2+d^2 + 2ad=165
3a^2+2d^2=165
3(7)^2 + 2d^2=165
3(49) +2d^2=165
2d^2=165-147
2d^2=18
d^2=9
d=3
a-d =7-3=4
a=7
a+d = 7+3=10
numbers are 4,7,10
Answered by
9
HEYA!!
----------
-----------------------------------------------------------------------------------------------------
◀ARITHMETIC PROGRESSIONS▶
----------------------------------------------------------------------------------------------------
➡Let the three Consecutive terms be :
a - d , a and a + d respectively
⚫ACCORDING TO THE GIVEN QUESTION :
======================================
a - d + a + a + d = 21
3a = 21
a = 7
=====
Thus, the terms become 7-d , 7 and 7+d
Applying second condition ,
(7-d)^2 + (7)^2 + (7+d)^2 = 165
49 + d^2 - 14d + 49 + 49 + d^2 + 14d = 165
147 + 2d^2 = 165
2d^2 = 18
d^2 = 9
d = 3 , -3
➡Taking positive value of d = 3
The terms become (7- 3 ) , 7 and ( 7+3 )
= 4 , 7 and 10
➡Taking negative value of d= -3
The terms become ( 7+3 ) , 7 and (7-3 )
= 10 , 7 and 4
[ Only the order of terms will change ]
---------------------------------------------------☺---------------------------------------------------
----------
-----------------------------------------------------------------------------------------------------
◀ARITHMETIC PROGRESSIONS▶
----------------------------------------------------------------------------------------------------
➡Let the three Consecutive terms be :
a - d , a and a + d respectively
⚫ACCORDING TO THE GIVEN QUESTION :
======================================
a - d + a + a + d = 21
3a = 21
a = 7
=====
Thus, the terms become 7-d , 7 and 7+d
Applying second condition ,
(7-d)^2 + (7)^2 + (7+d)^2 = 165
49 + d^2 - 14d + 49 + 49 + d^2 + 14d = 165
147 + 2d^2 = 165
2d^2 = 18
d^2 = 9
d = 3 , -3
➡Taking positive value of d = 3
The terms become (7- 3 ) , 7 and ( 7+3 )
= 4 , 7 and 10
➡Taking negative value of d= -3
The terms become ( 7+3 ) , 7 and (7-3 )
= 10 , 7 and 4
[ Only the order of terms will change ]
---------------------------------------------------☺---------------------------------------------------
DevilDoll12:
but what ?
Similar questions