Math, asked by tanishasinha2617, 1 year ago

The sum of three number in A.P is 9 and sum of their square is 59. Find the number

Answers

Answered by nain31
23
 \bold{Given,}

 \mathsf{The \: sum \: of \: three \: number \: is \: 9}

 \mathsf{Let \: the \: three \: numbers \: be}

 \mathsf{(a+d),a \: and \: (a-d)}

So,

 \mathsf{(a+d)+a +(a-d) =9}

 \mathsf{a+d+a +a-d) =9}

 \mathsf{3a =9}

 \mathsf{a = \frac{9}{3}}

 \huge \boxed{a = 3}

 \bold{Given,}

 \bold{The \: sum \: of \: square \: three \: number \: is \:59}

 \mathsf{{(a + d)}^{2} + {a}^{2} + {(a - d)}^{2} = 59}

{{(9+d)}^{2}+{9}^{2} +{(9-d)}^{2}=59}

We know,

 \boxed{{(a+b)}^{2}= {a}^{2} + {b}^{2} + 2ab}

 \boxed{{(a+b)}^{2}= {a}^{2} + {b}^{2} -2ab}

So,

 \mathsf{{a}^{2} + {d}^{2} + 2ad + {a}^{2} + {a}^{2} + {d}^{2} -2ad= 59}

Since,

 \huge \boxed{\mathsf{a = 3}}

 \mathsf{{3}^{2} + {d}^{2} + 6d + {3}^{2} + {3}^{2} + {d}^{2} -6 d= 59}

 \mathsf{9 + {d}^{2} + \cancel{6d} + 9+ 9+ {d}^{2} - \cancel{6d}= 59}

 \mathsf{9 + 9+ 9+ 2 {d}^{2} =59}

 \mathsf{27+ 2 {d}^{2} =59}

 \mathsf{ 2 {d}^{2} =59-27}

 \mathsf{ 2 {d}^{2} =32}

 \mathsf{ {d}^{2} =\frac{32}{2}}

 \mathsf{{d}^{2} = 16}

 \mathsf{d = \sqrt{16}}

 \boxed{ \mathsf{d= 4}}

So, the numbers are,

 \boxed{ \mathsf{a+d = 3+4 =7}}

 \boxed{ \mathsf{a-d = 3-4 =-1}}

 \boxed{ \mathsf{a = 3}}

biologyking1977: good ✔️nene ❤️
ParamPatel: great answer
Similar questions