Math, asked by bookworm699, 1 day ago

The sum of three numbers is 98. If the ratio of the first to the second is 2:3 and that of the second to the third is 5:8, find the three numbers.​

Answers

Answered by BrainlyZendhya
4

From the Question,

Let,

  • The three numbers be {x,\:y} and {z}

Given data,

  • \sf{x\:+\:y\:+\:z\:=\:98}
  • \sf{x\:{:}\:y\:=\:2\:{:}\:3,\:y\:{:}\:z\:=\:5\:{:}\:8}
  • \sf{{\dfrac{x}{y}}\:=\:{\dfrac{2}{3}},\:{\dfrac{y}{z}}\:=\:{\dfrac{5}{8}}}

From this, we get,

  • \sf{x}\:=\:{\dfrac{2y}{3}}\:----(1)
  • \sf{z}\:=\:{\dfrac{8y}{5}}\:----(2)

We know that, \sf{x\:+\:y\:+\:z\:=\:98}

Substituting the known values, we get,

\implies\sf{{\dfrac{2y}{3}}\:+\:y\:+\:{\dfrac{8y}{3}}\:=\:98}

\implies\sf{{\dfrac{10y\:+\:15y\:+\:24y}{15}}\:=\:98}

\implies\sf{{\dfrac{49y}{15}}\:=\:98}

\implies\sf{49y\:=\:98\:\times\:15}

\implies\sf{49y\:=\:1470}

\implies\sf{y\:=\:{\dfrac{1470}{49}}}

\implies\sf{y\:=\:{\cancel{{\dfrac{1470}{49}}}}}

\implies\sf{y\:=\:30}

Substituting 'y' value in (1), we get,

\implies\sf{x}\:=\:{\dfrac{2y}{3}}

\implies\sf{x}\:=\:{\dfrac{2(30)}{3}}

\implies\sf{x}\:=\:{\dfrac{60}{3}}

\implies\sf{x}\:=\:{\cancel{{\dfrac{60}{3}}}}

\implies\sf{x\:=\:20}

Substituting 'y' value in (2), we get,

\implies\sf{z}\:=\:{\dfrac{8y}{5}}

\implies\sf{z}\:=\:{\dfrac{8(30)}{5}}

\implies\sf{z}\:=\:{\dfrac{240}{5}}

\implies\sf{z}\:=\:{\cancel{{\dfrac{240}{5}}}}

\implies\sf{z\:=\:48}

Hence, x = 20, y = 30 and z = 48.

Similar questions