Math, asked by lalithalalithamma53, 1 year ago

The sum of three numbers is 98. If the ratio of the Frist number to the second number is 2:3 and that of second number to the third is 5:8 ,find the number​

Answers

Answered by rajsingh24
15

Answer:

THE THIRD NUMBER IS 30.

Attachments:
Answered by BrainlyKing5
25

Answer :

\boxed{\boxed{\mathsf{The \: Numbers \: are \: = 20 , 30\: and \: 48}}}

Step-by-step Explanation :

Given

  • The sum of three numbers is 98.
  • Ratio of First number to Second number = 2:3
  • and second number to the third number = 5:8

To Find

  • All the three numbers.

Solution

Let the ,

\mathsf{\longrightarrow \: First \: Number \: be = X}

\mathsf{\longrightarrow \: Second \: Number \: be = Y}

\mathsf{\longrightarrow \: Third \: Number \: be = Z}

Now According To Question

\large \mathsf{X + Y + Z = 98} ----- (1)

1 ) Ratio of First number to Second Number = 2:3

That is --

\mathsf{\longrightarrow \: \dfrac{First\: Number}{Second\: Number} = \dfrac{2}{3}}

\mathsf{\longrightarrow \: \dfrac{x}{y} = \dfrac{2}{3}}

\mathsf{\longrightarrow \: x = \dfrac{2}{3} \times y}

\mathsf{\longrightarrow \: x = \dfrac{2y}{3}} -- (i)

2 ) Ratio of Second Number to the third Number = 5:8

That is ,

\mathsf{\longrightarrow \: \dfrac{Second\: Number}{Third\: Number} = \dfrac{5}{8}}

\mathsf{\longrightarrow \: \dfrac{y}{z} = \dfrac{5}{8}}

\mathsf{\longrightarrow \: z  = \dfrac{8}{5} \times y }

\mathsf{\longrightarrow \: z  = \dfrac{8y}{5} } ---- (ii)

3 )Now putting this value of X and Z obtained above in 1

We have

\mathsf{\Longrightarrow \: x + y + z = 98}

\mathsf{\longrightarrow \: \dfrac{2y}{3} + y + \dfrac{8y}{5} = 98}

\mathsf{\longrightarrow \: \dfrac{2y}{3} + y + \dfrac{8y}{5} = 98}

\mathsf{\longrightarrow \: \dfrac{5(2y) + 15(y) + 3(8y)}{15} = 98}

\mathsf{\longrightarrow \: \dfrac{49y}{15} = 98}

\mathsf{\longrightarrow \: y  = 98 \times \dfrac{15}{49}}

\mathsf{\longrightarrow \: y  = \cancel{98} \times \left(\dfrac{ 15}{ \cancel{49}} \right)}

\mathsf{\longrightarrow \: \boxed{y  = 30}}

\underline{\underline{\mathsf{Putting\: value \: of \: y = 30 \: in \: (i) (iii)}}}

\mathsf{\longrightarrow \: x = \dfrac{2y}{3}}

\mathsf{\longrightarrow \: x = \dfrac{2(30)}{3}}

\mathsf{\longrightarrow \: x = \dfrac{60}{3}}

\mathsf{\longrightarrow \: \boxed{x = 20}}

and

\mathsf{\longrightarrow \: z = \dfrac{8y}{5}}

\mathsf{\longrightarrow \: z = \dfrac{8(30)}{5}}

\mathsf{\longrightarrow \: z = \dfrac{240}{5}}

\mathsf{\longrightarrow \: \boxed{z = 48}}

Therefore Required answer :

\underline{\boxed{\mathsf{The \: Numbers \: are \: = 20 , 30\: and \: 48}}}

Similar questions