the sum of three terms of a geometric sequence is 39/10 and their product is 1. find the common ratio and their terms
Answers
Answered by
3
When
a = the first term
r = the common ratio
then the first 3 terms can be written as;
a, ar, ar²
The sum of the first 3 terms = 39/10
So we have;
a+ar+ar² =39/10 ………(i)
The product of the first 3 terms = 1
So we have;
a*ar*ar² = 1……(ii)
Simplifying this, we get
a³*r³=1
(ar)³=1
ar=1
a = 1/r……(iii)
Substituting this in (i), we get
a+ar+ar²=39/10
1/r+1/r *r +1/r*r²=39/10
1/r+1+r=39/10 1/r + r/r +r²/r = 39/10
(1+r+r²)=39/10 * r
10(1+r+r²)=39r
10r²+10r+10=39r
10r^2-29r+10= 0
Use the quadratic formula to find the value of ‘r’ .
r= -(-29)+-√((-29)^2-4*10*10) / 2*10
r= 29+-√(441) / 20
r=29+-21 / 20
So, r= 29+21 / 20
or r=29-21/20
r= 5/2 or r=2/5
a = 1/r……(iii)
when r = 5/2, a = 2/5
and when r = 2/5, a= 5/2
the first 3 terms can be
2/5, 1, 5/2
OR
5/2, 1, 2/5
a = the first term
r = the common ratio
then the first 3 terms can be written as;
a, ar, ar²
The sum of the first 3 terms = 39/10
So we have;
a+ar+ar² =39/10 ………(i)
The product of the first 3 terms = 1
So we have;
a*ar*ar² = 1……(ii)
Simplifying this, we get
a³*r³=1
(ar)³=1
ar=1
a = 1/r……(iii)
Substituting this in (i), we get
a+ar+ar²=39/10
1/r+1/r *r +1/r*r²=39/10
1/r+1+r=39/10 1/r + r/r +r²/r = 39/10
(1+r+r²)=39/10 * r
10(1+r+r²)=39r
10r²+10r+10=39r
10r^2-29r+10= 0
Use the quadratic formula to find the value of ‘r’ .
r= -(-29)+-√((-29)^2-4*10*10) / 2*10
r= 29+-√(441) / 20
r=29+-21 / 20
So, r= 29+21 / 20
or r=29-21/20
r= 5/2 or r=2/5
a = 1/r……(iii)
when r = 5/2, a = 2/5
and when r = 2/5, a= 5/2
the first 3 terms can be
2/5, 1, 5/2
OR
5/2, 1, 2/5
Answered by
6
Solution :-
Let the first three terms be a/r, a and ar
Sum of three terms = 39/10
Product of three terms = 1
⇒ (a/r) + a + ar = 39/10 ...............(1)
⇒ (a/r)*a*ar = 1
⇒ (a*a*a*r)/r = 1
⇒ a³ = 1
a = ∛1
a = 1
Substituting a = 1 in (1)
(a/r + a + ar) = 39/10
⇒ (1/r + 1 + 1*r) = 39/10
⇒ (1 + r + r²)/r = 39/10
⇒ 10(1 + r + r²) = 39r
⇒ 10 + 10r + 10r² = 39r
⇒ 10r² + 10r - 39r + 10 = 0
⇒ 10r² - 29r + 10 = 0
Solving it we get.
⇒ (2r - 5) (5r - 2) = 0
⇒ 2r = 5 or 5r = 2
⇒ r = 5/2 or r = 2/5
a/r = 1/(5/2) or a/r = 1/(2/5)
a/r = 2/5 or a/r = 5/2
a = 1 a = 1
ar = 1*(5/2) ar = 1*(2/5)
ar = 5/2 ar = 2/5
So, three terms are (2/5), 1, (5/2) or (5/2), 1. (2/5)
Answer.
Let the first three terms be a/r, a and ar
Sum of three terms = 39/10
Product of three terms = 1
⇒ (a/r) + a + ar = 39/10 ...............(1)
⇒ (a/r)*a*ar = 1
⇒ (a*a*a*r)/r = 1
⇒ a³ = 1
a = ∛1
a = 1
Substituting a = 1 in (1)
(a/r + a + ar) = 39/10
⇒ (1/r + 1 + 1*r) = 39/10
⇒ (1 + r + r²)/r = 39/10
⇒ 10(1 + r + r²) = 39r
⇒ 10 + 10r + 10r² = 39r
⇒ 10r² + 10r - 39r + 10 = 0
⇒ 10r² - 29r + 10 = 0
Solving it we get.
⇒ (2r - 5) (5r - 2) = 0
⇒ 2r = 5 or 5r = 2
⇒ r = 5/2 or r = 2/5
a/r = 1/(5/2) or a/r = 1/(2/5)
a/r = 2/5 or a/r = 5/2
a = 1 a = 1
ar = 1*(5/2) ar = 1*(2/5)
ar = 5/2 ar = 2/5
So, three terms are (2/5), 1, (5/2) or (5/2), 1. (2/5)
Answer.
Similar questions