Math, asked by malli61921, 9 months ago

The sum of two angles is 3 radians and their difference is 40 degrees. Find the angles in radian.

Answers

Answered by MaheswariS
2

\underline{\textsf{Given:}}

\textsf{Sum of two angles is 3 radians and}

\mathsf{their\;difference\;is\;40^{\circ}}

\underline{\textsf{To find:}}

\textsf{The angles in radians}

\underline{\textsf{Solution:}}

\textsf{Let the two angles be A and B}

\mathsf{First\;we\;convert\;40^{\circ}\;into\;radians}

\mathsf{40^{\circ}=40{\times}\dfrac{\pi}{180}\,radians=\dfrac{2\pi}{9}\,radians}

\textsf{As per given data,}

\mathsf{A+B=3}

\mathsf{A-B=\dfrac{2\pi}{9}}

\mathsf{Adding\;the\;equations,we\;get}

\mathsf{2A=3+\dfrac{2\pi}{9}}

\mathsf{2A=\dfrac{27+2\pi}{9}}

\implies\boxed{\mathsf{A=\dfrac{27+2\pi}{18}}}

\mathsf{A+B=3}

\implies\mathsf{\dfrac{27+2\pi}{18}+B=3}

\implies\mathsf{B=3-\left(\dfrac{27+2\pi}{18}\right)}

\implies\mathsf{B=\dfrac{54-27-2\pi}{18}}

\implies\boxed{\mathsf{B=\dfrac{27-2\pi}{18}}}

\underline{\textsf{Answer:}}

\mathsf{A=\dfrac{27+2\pi}{18}\;radians}

\mathsf{B=\dfrac{27-2\pi}{18}\;radians}

Similar questions