Math, asked by aradhya6397, 6 months ago

The sum of two consecutive even integers is 54. Find the integers.
The sum of an integer and twice the
Find the two integers.​

Answers

Answered by Anonymous
40

Question:-

  • The sum of two consecutive even integers is 54. Find the integers.

Given:-

  • Sum of two consecutive even integers is 54.

To find:-

  • Find the integers.

Solution:-

  • Let the first integer be x.
  • Let the second integer be x + 2.

\large{\tt{\longmapsto{x + x + 2 = 54}}}

\large{\tt{\longmapsto{2x + 2 = 54}}}

\large{\tt{\longmapsto{2x = 54 - 2}}}

\large{\tt{\longmapsto{2x = 52}}}

\large{\tt{\longmapsto{x = \dfrac{52}{2}}}}

\large{\tt{\longmapsto{\boxed{\red{x = 26}}}}}

Hence,

  • First integer = 26
  • Second integer = x + 2 = 28

Verification:-

\large{\tt{\longmapsto{x + x + 2 = 54}}}

\large{\tt{\longmapsto{26 + 28 = 54}}}

\large{\tt{\longmapsto{\boxed{\orange{54 = 54}}}}}

Hence Verified

⠀⠀

Correct Question:-

  • The sum of an integer and twice the next integer is 41. Find the two integers.

Given:-

Sum of an integer and twice the next integer is 41.

To find:-

The two integers.

Solution:-

  • Let the first integer be x.
  • Let the second integer be x + 1.

\large{\tt{\longmapsto{x + 2(x + 1) = 41}}}

\large{\tt{\longmapsto{3x + 2 = 41}}}

\large{\tt{\longmapsto{3x = 41 - 2}}}

\large{\tt{\longmapsto{3x = 39}}}

\large{\tt{\longmapsto{x = \dfrac{39}{3}}}}

\large{\tt{\longmapsto{\boxed{\red{x = 13}}}}}

Hence,

  • First integer = 13
  • Second integer = x + 1 = 14

Verification:-

\large{\tt{\longmapsto{x + x + 1 = 41}}}

\large{\tt{\longmapsto{13 + 14 = 41}}}

\large{\tt{\longmapsto{\boxed{\orange{41 = 41}}}}}

Hence Verified

Answered by Anonymous
6

AnswEr-:

  • 1 ) \underline{\boxed{\star{\sf{\blue{ The \:two\:even\:consecutive \:integers\:are\:26\:and\:28 .}}}}}
  • 2 ) \underline{\boxed{\star{\sf{\blue{ The \:two\:even\:\:integers\:are\:13\:and\:14 .}}}}}

Correct Question-:

  • 1 ) The sum of two consecutive even integers is 54. Find the integers.

AnswEr-:

Explanation -:

 \frak{Given \:-:}\begin{cases} & \sf{The \:sum \:of\: two \:consecutive\: even \:integers\: is\: 54  .} \end{cases}\\\\

 \frak{To\: Find \:-:}\begin{cases} & \sf{The \:\: two \: \:integers\:   .} \end{cases}\\\\

Now ,

  • Let the First integer be x .
  • Let the second integer be x +2

 \frak{According \:To\:The\:Question \:-:}\begin{cases} & \sf{ The \:sum \:of\: two \:consecutive\: even \:integers\: is\: 54 .} \end{cases}\\\\

Then ,

  • \implies{\sf{\large {x + x + 2 = 54 }}}

Now Solving for X ,

  • \implies{\sf{\large {x + x + 2 = 54 }}}
  • \implies{\sf{\large {2x + 2 = 54 }}}
  • \implies{\sf{\large {2x= 54 - 2 }}}
  • \implies{\sf{\large {2x = 52 }}}
  • \implies{\sf{\large {x  = \frac{52}{2} }}}
  • \implies{\sf{\large {x = 26 }}}

Then ,

  • \underline{\boxed{\star{\sf{\blue{ x = 26 }}}}}

Now ,

  • First Integer = x = 26
  • Second integer = x + 2 = 26 + 2 = 28

Hence ,

  • \underline{\boxed{\star{\sf{\blue{ The \:two\:even\:consecutive \:integers\:are\:26\:and\:28 .}}}}}

________________________________________

♤ Verification ♤

  • The First integer is x .
  • The second integer is x +2

 \frak{According \:To\:The\:Question \:-:}\begin{cases} & \sf{ The \:sum \:of\: two \:consecutive\: even \:integers\: is\: 54 .} \end{cases}\\\\

Then ,

  • \implies{\sf{\large {x + x + 2 = 54 }}}

Now ,

  • \underline{\boxed{\star{\sf{\blue{ x = 26 }}}}}

By Substituting the value -:

  • \implies{\sf{\large {26+ 26 + 2 = 54 }}}
  • \implies{\sf{\large {26 + 28 = 54 }}}
  • \implies{\sf{\large {54= 54 }}}

Therefore,

  • \underline{\boxed{\star{\sf{\blue{ LHS = RHS  }}}}}
  • \underline{\boxed{\star{\sf{\blue{ Hence ,\: Verified }}}}}

__________________________

Correct question -:

  • 2 ) The sum of an integer and twice the next integer is 41 . Find the two integers ?

AnswEr-:

Explanation-:

 \frak{Given \:-:}\begin{cases} & \sf{ The \:sum\: of \:an\: integer \:and \:twice\: the\: next\: integer\: is\: 41 .} \end{cases}\\\\

 \frak{To\: Find \:-:}\begin{cases} & \sf{The \:\: two \: \:integers\:   .} \end{cases}\\\\

Now ,

  • Let the first integer be x .
  • The second integer is X + 1

According to the question-:

  • \implies{\sf{\large {x + 2 (x +1) = 41 }}}
  • \implies{\sf{\large { 3x +2 = 41 }}}
  • \implies{\sf{\large {3x= 41-2 }}}
  • \implies{\sf{\large {3x = 39 }}}
  • \implies{\sf{\large {x= \frac{39}{3} }}}
  • \implies{\sf{\large {x  = 13 }}}

Therefore,

  • \underline{\boxed{\star{\sf{\blue{ x = 13}}}}}

Now ,

  • First Integer = x = 13 .
  • Second Integer = x + 1 = 13 + 1 = 14

Hence ,

  • \underline{\boxed{\star{\sf{\blue{ The \:two\:even\:\:integers\:are\:13\:and\:14 .}}}}}

___________________________________

♤ Verification ♤

  • The First integer is x .
  • The second integer be x + 1.

 \frak{According \:To\:The\:Question \:-:}\begin{cases} & \sf{The \:sum\: of \:an\: integer \:and \:twice\: the\: next\: integer\: is\: 41  .} \end{cases}\\\\

Now ,

  • \implies{\sf{\large {x + 2 (x +1) = 41 }}}

Here ,

  • \underline{\boxed{\star{\sf{\blue{ x = 13}}}}}

Now,

  • \implies{\sf{\large {13 + 2 (13 +1) = 41 }}}
  • \implies{\sf{\large {13 + 26 + 2 = 41 }}}
  • \implies{\sf{\large {13 +  28 = 41 }}}
  • \implies{\sf{\large {41 = 41 }}}

Therefore ,

  • \underline{\boxed{\star{\sf{\blue{ LHS = RHS  }}}}}
  • \underline{\boxed{\star{\sf{\blue{ Hence ,\: Verified }}}}}

______________>>♡<<____________________

Similar questions