Environmental Sciences, asked by ayoushsingh48, 3 months ago

The sum of two consecutive even integr is 54. find the integers​

Answers

Answered by tt821057
4

Answer:

26 and 28

Explanation:

1st integer = x

2nd integer = x + 2

 x + x + 2 = 54

2x + 2 = 54

2x = 52

 x = 26

 The 1st integer is 26.

The 2nd integer is 28.

Thanks

"Please mark it as brainliest."

Answered by Anonymous
9

Correct Question-:

  • 1 ) The sum of two consecutive even integers is 54. Find the integers.

AnswEr-:

  • \underline{\boxed{\star{\sf{\blue{ The \:two\:even\:consecutive \:integers\:are\:26\:and\:28 .}}}}}

Explanation -:

  •  \frak{Given \:-:}\begin{cases} & \sf{The \:sum \:of\: two \:consecutive\: even \:integers\: is\: 54  .} \end{cases}\\\\

  •  \frak{To\: Find \:-:}\begin{cases} & \sf{The \:\: two \: \:integers\:   .} \end{cases}\\\\

Now ,

  •  \frak{Let's \:Assume \:-:}\begin{cases}  \sf{Let\:the\:first\:integer\:be\:x  .}&\\\\ \sf{Let\:the\:second\:integer\:be\:x+2.}\end{cases}\\\\

  •  \frak{According \:To\:The\:Question \:-:}\begin{cases} & \sf{ The \:sum \:of\: two \:consecutive\: even \:integers\: is\: 54 .} \end{cases}\\\\

Then ,

  • \implies{\sf{\large {x + x + 2 = 54 }}}

\sf{\bf{\dag{Now\: Solving\: for\: X ,}}}

  • \implies{\sf{\large {x + x + 2 = 54 }}}
  • \implies{\sf{\large {2x + 2 = 54 }}}
  • \implies{\sf{\large {2x= 54 - 2 }}}
  • \implies{\sf{\large {2x = 52 }}}
  • \implies{\sf{\large {x  = \frac{52}{2} }}}
  • \implies{\sf{\large {x = 26 }}}

Then ,

  • \underline{\boxed{\star{\sf{\blue{ x = 26 }}}}}

Now ,

  •  \frak{Putting \:x=26\:-:}\begin{cases}  \sf{\:The\:first\:integer\:is\:x= 26  .}&\\\\ \sf{\:The\:second\:integer\:is\:x+2 = 26 + 2 = 28.}\end{cases}\\\\

Hence ,

  • \underline{\boxed{\star{\sf{\blue{ The \:two\:even\:consecutive \:integers\:are\:26\:and\:28 .}}}}}

________________________________________

♤ Verification ♤

  •  \frak{Here \:-:}\begin{cases}  \sf{\:The\:first\:integer\:is\:x  .}&\\\\ \sf{\:The\:second\:integer\:is\:x+2.}\end{cases}\\\\

  •  \frak{According \:To\:The\:Question \:-:}\begin{cases}  \sf{ The \:sum \:of\: two \:consecutive\: even \:integers\: is\: 54 .} \end{cases}\\\\

Then ,

  • \implies{\sf{\large {x + x + 2 = 54 }}}

Now ,

  • \underline{\boxed{\star{\sf{\blue{ x = 26 }}}}}

\sf{\bf{\dag{By \:Substituting\: the\: value -: ,}}}

  • \implies{\sf{\large {26+ 26 + 2 = 54 }}}
  • \implies{\sf{\large {26 + 28 = 54 }}}
  • \implies{\sf{\large {54= 54 }}}

Therefore,

  • \underline{\boxed{\star{\sf{\blue{ LHS = RHS  }}}}}
  • \underline{\boxed{\star{\sf{\blue{ Hence ,\: Verified }}}}}

__________________________♡___________________________

Similar questions