Math, asked by renusharma63735, 11 months ago

the sum of two consecutive multiples of 5 is 55 the to multiple pulse r​

Answers

Answered by Anonymous
32

Given

The sum of two consecutive multiples of 5 is 55 Find the multiples

Solution

Let the consecutive number be 5x and 5(x + 1)

According to the given condition

\implies\sf 5x + 5(x + 1)= 55 \\ \\ \implies\sf 5x + 5x + 5= 55 \\ \\ \implies\sf 10x + 5 = 55 \\ \\ \implies\sf 10x = 55 - 5 \\ \\ \implies\sf 10x = 50 \\ \\ \implies\sf x=\cancel\dfrac{50}{10} \\ \\ \therefore\sf x = 5

___________________________________

5x = 5 × 5 = 25

5(x + 1) = 5(5 + 1) = 30

Hence, 25 and 30 are the multiples

Answered by sethrollins13
1

✯✯ QUESTION ✯✯

The sum of two consecutive multiples of 5 is 55 ..Find the multiples : -

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\implies\tt{Let\:1st\:Cons.\:Multiple\:be=5x}

\implies\tt{Let\:2nd\:Cons.\:Multiple\:be=5(x+1)}

\implies\tt{Sum\:of\:Multiples=55}

A.T.Q : -

\implies\tt{5x+5(x+1)=55}

\implies\tt{5x+5x+5=55}

\implies\tt{10x+5=55}

\implies\tt{10x=55-5}

\implies\tt{10x=50}

\implies\tt{x=\cancel\dfrac{50}{10}}

\red\longmapsto\:\large\underline{\boxed{\bf\green{x}\orange{=}\purple{5}}}

Now ,

\implies\tt{1st\:Multiple=5(5)}

\implies\tt\bold{25}

\implies\tt{2nd\:Multiple=5(5+1)}

\implies\tt{25+1}

\implies\tt\bold{26}

━━━━━━━━━━━━━━━━━━━━

VERIFICATION : -

\implies\tt{5(5)+5(5+1)=55}

\implies\tt{25+5(6)=55}

\implies\tt{25+30=55}

\implies\tt\bold{55=55}

\orange\longmapsto\:\large\underline{\boxed{\bf\red{L.H.S}\orange{=}\pink{R.H.S}}}

HENCE VERIFIED

Similar questions