Math, asked by saritadevi0031, 4 months ago

The sum of two consecutive multiples of 5 is 65. Find the number.

Answers

Answered by Anonymous
5

Correct Question-:

  • The sum of two consecutive multiples of 5 is 65. Find the number.

AnswEr-:

  • \underline{\boxed{\star{\sf{\blue{ The\:two\:numbers \;are\:30\:and\:35. }}}}}

EXPLANATION-:

  •  \frak{Given \:\: -:} \begin{cases} \sf{The\:sum\:of\:two\:consecutive\:multiples\;of\:5\:is\:65.}\end{cases} \\\\
  •  \frak{To \:Find\: -:} \begin{cases} \sf{The\:\:number. .}\end{cases} \\\\

Now ,

  •  \frak{Let's \:Assume \: -:} \begin{cases} \sf{The\:first \:consecutive \:number \:be\:= \frak{5(x +1)}} & \\\\ \sf{Then,}& \\\\ \sf{The\:second \:consecutive \:number \:is\:= \frak{5(x +2)}}\end{cases} \\\\

  • Then ,
  •  \frak{According \:To\:Question \: -:} \begin{cases} \sf{ The\:sum\:of\:two\:consecutive\:multiples\;of\:5\:is\:65.}& \\\\ \sf{Then,}& \\\\ \sf{Equation\:Formed =5(x+1)+5(x+2)=65}\end{cases} \\\\

  • Solving for x in Equation-: 5(x +1) + 5(x+2) = 65
  • \implies{\sf{\large { 5(x +1) + 5(x +2) =65 }}}
  • \implies{\sf{\large { 5x +5 + 5x +10 =65 }}}
  • \implies{\sf{\large { 5x +5x + 5 +10 =65 }}}
  • \implies{\sf{\large { 10x + 15 =65 }}}
  • \implies{\sf{\large { 10x =65-15 }}}
  • \implies{\sf{\large { 10x =50 }}}
  • \implies{\sf{\large { x =\frac{50}{10} }}}
  • \implies{\sf{\large { x  =5 }}}

Therefore,

  • \underline{\boxed{\star{\sf{\blue{ x = 5 }}}}}

Now ,

  •  \frak{Putting \:x =5 \: -:} \begin{cases} \sf{The\:first \:consecutive \:number \:be\:= \frak{5(x +1)=5(5+1)=25+5=30}} & \\\\ \sf{Then,}& \\\\ \sf{The\:second \:consecutive \:number \:is\:= \frak{5(x +2)=5(5+2)=25+10=35}}\end{cases} \\\\

Hence ,

  • \underline{\boxed{\star{\sf{\blue{ The\:two\:numbers \;are\:30\:and\:35. }}}}}

______________________________

  • Equation = 5(x +1) + 5(x+2) = 65
  • Here,
  • \implies{\sf{\large { x  =5 }}}

Now ,

  • Substitute the value x =5 in Equation.
  • Equation = 5(x +1) + 5(x+2) = 65

  • \implies{\sf{\large { 5(5 +1) + 5(5 +2) =65 }}}
  • \implies{\sf{\large { 25+5 + 25+10 =65 }}}
  • \implies{\sf{\large { 30+35 =65 }}}
  • \implies{\sf{\large { 65=65 }}}

Therefore,

  • \underline{\boxed{\star{\sf{\blue{ LHS = RHS }}}}}

  • \implies{\sf{\large { Hence\:,Verified. }}}

__________________♡_____________________

Similar questions