Math, asked by gauravwadekar3704, 11 months ago

The sum of two digit no and number obtained by reversing the digit is 66.if the digits of the no differ by 2then find the number

Answers

Answered by Anonymous
44

Hi! Smile please, it suits your pretty face. Enjoy! :D

\bold{\underline{\underline{\sf{\red{Given\::}}}}}

  • The sum of two digit no and number obtained by reversing the digit is 66.
  • The digits of the number differ by 2.

\bold{\underline{\underline{\sf{\red{To\:Find :\:}}}}}

  • The original number.

\bold{\underline{\underline{\sf{\red{ Solution\::}}}}}

Let the digit at the tens place be x.

Let the digit at the units place be y.

Original Number : \tt{10x\:+\:y}

Reversed Number : \tt{10y\:+\:x}

\bold{\sf{\underline{\underline{\green{As\:per\:the\:first\:given\:condition:}}}}}

\tt{10x\:+\:y\:+\:10y\:+\:x\:=\:66}

\tt{11x\:+\:11y\:=\:66}

\tt{\dfrac{11x}{11}\:+\:{\dfrac{11y}{11}\:=\:{\dfrac{66}{11}}}}

\tt{x+y=6\:\:\:\:\:(i)}

\bold{\sf{\underline{\underline{\green{As\:per\:the\:second\:given\:condition:}}}}}

\tt{x-y=2\:\:\:\:(ii)}

Add equation (i) to (ii)

\tt{x+y\:+\:x\:-y\:=\:6\:+\:2}

\tt{2x\:=\:8}

\tt{x\:=\:{\dfrac{8}{2}}}

\tt{x=4}

Substitute x = 4 in equation (i)

\tt{x+y=6}

\tt{4+y=6}

\tt{y=6-4}

\tt{y=2}

\bold{\large{\boxed{\red{\mathcal{Ten's\:digit\:=\:x\:=\:4}}}}}

\bold{\large{\boxed{\purple{\mathcal{Unit's\:digit\:=\:y\:=\:2}}}}}

\bold{\large{\boxed{\blue{\mathcal{Original\:Number\:=\:10x\:+\:y\:=\:10\:\times\:4\:+\:2\:=\:40\:+\:2\:=\:42}}}}}

#Shinchan_Lover "


StarrySoul: Amazing!❤️
Answered by XEVILX
16

 \bold \red{The \: only \:  way \:  to  \: learn  \: Mathematics}  \\   \bold \red{is \:  to  \: do \:  mathematics :) }</p><p>

We are here given with :

Sum of digits by reversing = 66

Digits differ by 2

We have to find :

The Original Number

Here,Goes the solution :D

Let the digit at unit's place be y and digit at ten's place be x

 \star \sf  \: Original \: No =  \bold \blue{10x + y}

 \star \sf  \: Interchanged  \: No  \:=  \bold \blue{10y + x}

According to the Question :

 \implies \sf \: 10x + y + 10y + x = 66

 \implies \sf \: 11x + 11y = 66

 \implies \sf \: 11(x + y) = 66

 \implies \sf \: (x + y) =   \cancel  \dfrac{66}{11}

\sf \: x + y =    \large\boxed{ \bold \blue{6}}.....(i)

Again, According to the Question :

\sf \: x  -  y =    \large\boxed{ \bold \blue{2}}.....(ii)

Now, add the equation (i) and equation (ii)

 \sf \green{x + y + x - y = 6 + 2}

 \implies \sf \: 2x = 8

 \implies \sf \: x =  \cancel \dfrac{8}{2}

\sf \: x   =    \large\boxed{ \bold \pink{4}} \: Tens \: place \: digit

Putting the value of x = 4 in equation i)

 \implies \sf \: x + y = 6

 \implies \sf \: 4 + y = 6

 \implies \sf \: y = 6 - 4

\sf \: y  =    \large\boxed{ \bold\pink{2}} \: Units \: place \: digit

Hence,Original Number :

 \star   \: \sf { \bold{\red{10 \times 4 + 2}}} \:  =   \large \: \boxed{ \bold{ \purple{42}}}


StarrySoul: Well Explained :D
Similar questions