Math, asked by verindertravels, 1 year ago

the sum of two digit number and the number obtained by reversing the digit is 165 . if the digits differ by 3 find the number

Answers

Answered by Anonymous
27
let \: the \: two \: digit \: number \: be \: 10x + y. \\ \\ after \: reversing \: the \: number \: \\ becomes \: 10y + x. \\ \\ according \: to \: question \\ 10x + y + 10y + x = 165 \\ 11x + 11y = 165 \\ 11(x + y) = 165 \\ x + y = \frac{165}{11} \\ x + y = 15 \\ x = 15 - y \: \: \: \: \: \: ................(1)
The digits differ by 3.
Let x>y.
i.e,
x = y + 3 \: \: \: \: \: \: \: .................(2)
from eq (1) & (2)

15 - y = y + 3 \\ 15 - 3= 2y \\ y = \frac{12}{2} \\ y = 6
from eq (2)
x = 6 + 3 \\ x = 9
so \: the \: digit \: is \: 96 \: or \: 69.
Similar questions