Math, asked by dhruv954042, 5 months ago

the sum of two digit number is 12 the digits are reversed the new number becomes 4/7 times the original number find the original number
for class 8th
ch=linear equations in one variable
so please use only one variable​

Answers

Answered by Ataraxia
30

Solution :-

Let :-

Digit in ten's place = x

Digit in one's place = y

Two digit number = 10x + y

According to the first condition :-

:\implies \sf x+y  = 12

:\implies \sf x = 12-y  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  ...................(1)

According to the second condition :-

:\implies \sf \dfrac{4}{7} \times 10x+y = 10y+x

:\implies \sf \dfrac{40x+4y}{7}= 10y+x

:\implies \sf 40x+4y = 70y+7x

:\implies \sf40x-7x+4y-70y = 0

:\implies \sf 33x-66y = 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  ..................(2)

Substitute the value of x in eq(2) :-

:\implies \sf 33(12-y)-66y = 0

:\implies \sf396-33y-66y = 0

:\implies \sf -99y = -396

:\implies \sf \bf y = 4

Substitute y = 4 in eq(1) :-

 :\implies \sf x = 12-4

 :\implies \bf x = 8

Two digit number = 84

Answered by NewGeneEinstein
5

Step-by-step explanation:

Let

One's place digit=x

Ten's place digit =y

{:}\longrightarrow\sf the number =10y+x

Condition-1:-

{:}\longrightarrow\sf x+y=12

{:}\longrightarrow\sf y=12-x\dots\dots (1)

Condition-2:-

if the digits reversed then the new number=10x+y

{:}\longrightarrow\sf \dfrac {4}{7}(10y+x)=10x+y

{:}\longrightarrow\sf \dfrac {4 (10y+x)}{7}=10x+y

{:}\longrightarrow\sf \dfrac {40y+4x}{7}=10x+y

  • use cross multiplication

{:}\longrightarrow\sf 40y+4x=7 (10x+y)

{:}\longrightarrow\sf 40y+4x=70x+7y

{:}\longrightarrow\sf 40y-7y+4x-70x=0

{:}\longrightarrow\sf 33y-66x=0\dots (2)

  • Substitute the value of y from eq (1)

{:}\longrightarrow\sf 33(12-x)-66x=0

{:}\longrightarrow\sf 396-33x-66x=0

{:}\longrightarrow\sf 396-99x=0

{:}\longrightarrow\sf -99x=-396

{:}\longrightarrow\sf x=\dfrac {-396}{-99 }

{:}\longrightarrow\sf x=4

  • Substitute the value in eq (1)

{:}\longrightarrow\sf y=12-4

{:}\longrightarrow\sf y=8

Hence the two digit number

{:}\longrightarrow\sf 10(8)+4

{:}\longrightarrow\sf 80+4

{:}\longrightarrow\sf 84

\therefore\underline{\sf The\:two\:digit\:number\:is\;84.}

Similar questions