The sum of two digits of a 2-digit number is 11. Reversing the digits increase the number by 45. What is the number?
Answers
Answer:
The number is 38
Step-by-step explanation:
Let,
Units digit = y
Tens digit = 11 - y
Original no :
⇒ 10 (11 - y) + y
⇒ 110 - 10y + y
⇒ 110 - 9y
Reversing the digits increase the number by 45 :
⇒ 10y + (11 - y)
⇒ 10y - y + 11
9y + 11
★ According to the Question :
⇒ (110 - 9y) + 45 = 9y + 11
⇒ 110 + 45 - 9y = 9y + 11
⇒ 155 - 9y = 9y + 11
⇒ - 9y - 9y = 11 - 155
⇒ - 18y = - 144
⇒ 18y = 144
⇒ y = 144 / 18
⇒ y = 8
Units digit = 8
Tens digit = 11 - y
⇒ 11 - 8
⇒ 3
∴ The number is 38
A two digit positive integer can be written as 10x+y, where x is the ten's digit and y is the one's digit.
For example, 52 = 10(5)+2
So, if we let x = ten's digit and y = one's digit, then:
x+y=11
(10x+y)+45 = 10y+x
Simplify to get x+y = 11
9x-9y = -45
Dividing the second equation by 9, we have x+y = 11
x -y = -5
Add the equations to obtain 2x = 6. So, x = 3
Since x+y=11 and x=3, y = 8.