the sum of two digits of a 2 digit number is 7. if the number formed by reversing the digits is more than the original number by 27. find the original number.
Answers
Answered by
2
here's your solution dear...
Attachments:
Answered by
7
Hey!
Let the Digit at ones place be x
Let the Digit at tens place be y
So , Number formed = x + 10y
Also, Number formed by reversing digits = y + 10x
According to the given question
----------------------------------------------------
x + y = 7 --------------------------------------------------------(1)
x = 7 - y ----------------------------------------------------(2)
( x + 10 y )+ 27 . = ( y + 10 x )
x + 10 y + 27 - y - 10x = 0
9y - 9x + 27 = 0
9 ( y - x + 3 ) =0
y - x = -3
From (2) we have ,
y - ( 7 - y ) = -3
y - 7 + y = -3
2y - 7 = -3
2y = -3+7
2y= 4
y= 2
x =5
---------------------------------------------------
⏪Number formed = x + 10y
= 5 + 10(2)
= 5 + 20
= 25
----------------------------------------------------------------------------------------------------
Let the Digit at ones place be x
Let the Digit at tens place be y
So , Number formed = x + 10y
Also, Number formed by reversing digits = y + 10x
According to the given question
----------------------------------------------------
x + y = 7 --------------------------------------------------------(1)
x = 7 - y ----------------------------------------------------(2)
( x + 10 y )+ 27 . = ( y + 10 x )
x + 10 y + 27 - y - 10x = 0
9y - 9x + 27 = 0
9 ( y - x + 3 ) =0
y - x = -3
From (2) we have ,
y - ( 7 - y ) = -3
y - 7 + y = -3
2y - 7 = -3
2y = -3+7
2y= 4
y= 2
x =5
---------------------------------------------------
⏪Number formed = x + 10y
= 5 + 10(2)
= 5 + 20
= 25
----------------------------------------------------------------------------------------------------
Similar questions