Math, asked by sameenaqamar88295, 1 month ago

The sum of two digits of a number is 9. If 9 is subtracted from the number, then the digits are reversed. The number is:
..
please tell me this,, ​

Answers

Answered by ShírIey
92

❍ Let's say, the unit place digit be x and ten's place digit be y respectively.

➠ The number is (10y + x).

\rule{100px}{.3ex}

⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{According \;to \;the\: given \;Question\; :}}

  • The sum of two digits of a number is 9.

Therefore,

➠ x + y = 9

➠ x = 9 - y ⠀⠀⠀⠀⠀⠀⠀⠀⠀—eq( I ).

⠀⠀⠀⠀

Also,

⠀⠀⠀⠀

  • If 9 is subtracted from the number, then the digits are reversed.

⠀⠀⠀⠀

Therefore,

⠀⠀⠀⠀

:\implies\sf 10y + x - 9 = 10x + y \\\\\\:\implies\sf 10y + x - 10x - y = 9 \\\\\\:\implies\sf 9y - 9x = 9\\\\\ \\  \footnotesize \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \dag \sf \:  \:  Taking\:common\:9 \\\\\\:\implies\sf 9(y - x) = 9\\\\\\:\implies\sf  y - x = \cancel\dfrac{9}{9}\\\\\\:\implies\sf  y - x = 1

⠀⠀⠀⠀

F R O M EQn I :

⠀⠀⠀⠀

:\implies\sf y -x = 1  \\\\\\:\implies\sf y - 9 - y = 1\\\\\\:\implies\sf 2y = 10\\\\\\:\implies\sf  y = \cancel\dfrac{10}{2}\\\\\\:\implies\underline{\boxed{\frak{\pmb{\pink{y = 5}}}}}\;\bigstar

⠀⠀⠀⠀

And,

⠀⠀⠀⠀

:\implies\sf x + y = 9\\\\\\:\implies\sf  x + 5 = 9\\\\\\:\implies\sf  x = 9 - 5 \\\\\\:\implies\underline{\boxed{\frak{\pmb{\pink{x = 4}}}}}\;\bigstar

⠀⠀⠀⠀

\therefore{\underline{\textsf{Hence, \;the\; required\; number\;is\:\textbf{54}.}}}

⠀⠀⠀⠀

\rule{300px}{.3ex}

V E R I F I C A T I O N :

  • It is given as, the sum of both two digits number is 9. So, let's verify the digits : ⠀⠀

Therefore,

\dashrightarrow\sf x + y = 9 \\\\\\\dashrightarrow\sf 5 + 4 = 9\\\\\\\dashrightarrow\underline{\boxed{\frak{\pmb{9 = 9}}}}

⠀⠀⠀⠀

\qquad\qquad\therefore{\underline{\textsf{\textbf{Hence, Verified!}}}}

Answered by PopularAnswerer01
111

Question:-

  • The sum of two digits of a number is 9. If 9 is subtracted from the number, then the digits are reversed. The number is

To Find:-

  • Find the number.

Solution:-

  • Let the unit place digit be x and the ten's place digit be y.

Given ,

  • x + y = 9 . . . . ( 1 )

The two numbers are:-

  • 10y + x and 10x + y

According to the question:-

\longrightarrow\sf \: 10y + x - 9 = 10x + y

\longrightarrow\sf \: 10y - y = 10x - x + 9

\longrightarrow\sf \: 9y = 9x + 9

\longrightarrow\sf \: 9y - 9x = 9

\longrightarrow\sf \: 9( y - x ) = 9

\longrightarrow\sf \: y - x = \cancel\dfrac { 9 } { 9 }

\longrightarrow\sf \: y - x = 1 . . . . ( 2 )

Add equation ( 1 ) and ( 2 ):-

\longrightarrow\sf \: y - x + x + y = 9 + 1

\longrightarrow\sf \: 2y = 10

\longrightarrow\sf \: y = \cancel\dfrac { 10 } { 2 }

\longrightarrow\sf \: y = 5

Now ,

Substitute ' y ' value in equation

( 1 ):-

\longrightarrow\sf \: x + y = 9

\longrightarrow\sf \: x + 5 = 9

\longrightarrow\sf \: x = 9 - 5

\longrightarrow\sf \: x = 4

Hence ,

  • The number is 54
Similar questions