Math, asked by abhaypratapsinghabc, 11 months ago

the sum of two digits of a two digit number is 12 if the digits are reversed then the number so formed exceeds the original number by 18 find the original number

Answers

Answered by jatinshrimali24
0

Answer:

x = 14/11 and y = -8/11

Step-by-step explanation:

full explaination is in the image

hope you like the answer

Attachments:
Answered by mathdude500
1

Answer:

\boxed{\sf \: Number  \:  =  \: 57 \: } \\

Step-by-step explanation:

\begin{gathered}\begin{gathered}\bf\: Let-\begin{cases} &\sf{digit \: at \: ones \: place \: be \: y} \\  \\ &\sf{digit \: at \: tens \: place \: be \: x} \end{cases}\end{gathered}\end{gathered} \\  \\

\begin{gathered}\begin{gathered}\bf\: So-\begin{cases} &\sf{Number \: formed \:  =  \: 10x + y} \\  \\ &\sf{Reverse \: number \:  =  \: 10y + x} \end{cases}\end{gathered}\end{gathered} \\  \\

According to statement, sum of the digits of a two digit number is 12.

\sf \: x + y = 12 \\  \\

\sf\implies \sf \: y = 12 - x -  -  - (1) \\  \\

According to statement, the reverse number exceeds the original number by 36.

\sf \: 10y + x - (10x + y) = 18 \\  \\

\sf \: 10y + x - 10x  -  y = 18 \\  \\

\sf \: 9y - 9x= 18 \\  \\

\sf \: 9(y - x)= 18 \\  \\

\sf \: y - x = 2 \\  \\

On substituting the value of y from equation (1), we get

\sf \: 12 - x - x = 2 \\  \\

\sf \: 12 - 2x = 2 \\  \\

\sf \: - 2x = 2 - 12 \\  \\

\sf \: - 2x = - 10 \\  \\

\sf\implies \sf \: x = 5 \\  \\

On substituting the value of x = 5 in equation (1), we get

\sf\implies \sf \: y = 12 - 5 = 7 \\  \\

Hence,

\sf \: Number \: \:  =  \: 10 \times 5 + 7 \\  \\

\sf\implies \bf \: Number  \:  =  \: 57 \\  \\

Similar questions