Math, asked by rakshitsinghchauhan5, 9 hours ago

The sum of two expressions is
5 {x}^{2} y + 2 {x}^{2}  {y}^{2}  + 4 {y}^{2} x
If one of them is
12 {x}^{2} y - 2 {x}^{2} {y}^{2}  + 3 {y}^{2} x
Find the other.​

Answers

Answered by Anonymous
11

Given:-

\red{➤}\:\sf One\: Expression = 12 {x}^{2} y - 2 {x}^{2} {y}^{2} + 3 {y}^{2}x

\red{➤}\:\sf Sum\:of\: Expression = 5 {x}^{2} y + 2 {x}^{2} {y}^{2} +

\sf 4 {y}^{2} x

\\

To Find:-

\orange{☛}\:\sf Other \: Expression

\\

Assumption:-

\red{•}\:\sf{Let \;the\; other\; expression \:be\: \red{a}}

\\

Solution:-

\underline{\tt{Now,}}

\begin{gathered}\\\quad\longrightarrow\quad\sf 12 {x}^{2} y - 2 {x}^{2} {y}^{2} + 3 {y}^{2} x + a =5 {x}^{2} y + 2 {x}^{2} {y}^{2} + 4 {y}^{2} x \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf  a =5 {x}^{2} y + 2 {x}^{2} {y}^{2} + 4 {y}^{2} x - 12 {x}^{2} y - 2 {x}^{2} {y}^{2} + 3 {y}^{2} x \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf  a =5 {x}^{2} y + 2 {x}^{2} {y}^{2} + 4 {y}^{2} x -( 12 {x}^{2} y - 2 {x}^{2} {y}^{2} + 3 {y}^{2} x) \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf  a =5 {x}^{2} y + 2 {x}^{2} {y}^{2} + 4 {y}^{2} x -12 {x}^{2} y + 2 {x}^{2} {y}^{2} - 3 {y}^{2} x \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf  a =5 {x}^{2} y-12 {x}^{2} y + 2 {x}^{2} {y}^{2} + 2 {x}^{2} {y}^{2} + 4 {y}^{2} x  - 3 {y}^{2} x \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf  a =-7 {x}^{2} y+ 4 {x}^{2} {y}^{2} +  {y}^{2} x  \\\end{gathered}

\boxed{\sf{Other \:  Expression \implies \red{ -7 {x}^{2} y+ 4 {x}^{2} {y}^{2} +  {y}^{2} x}}}

Note-

  • Only Like algebraic terms can be added.
  • Change of signs of term after opening of brackets before negetive sign.
  • Slide to see full answer or see it in website.
Similar questions