Math, asked by nitinwaidande5948, 10 months ago

The sum of two integer is -11 and their product is -80 what are the two integers

Answers

Answered by Anonymous
39

Given :

  • The sum of two integer is -11
  • Product - 80

To Find :

  • The two integers.

Solution :

Let the two integers be x and y.

Case 1 :

Sum of greater integer, x and smaller integer y is - 11.

Equation :

\longrightarrow \sf{x+y=-11}

\sf{x=-y-11\:\:(i)}

Case 2 :

Product of x and y is - 80

Equation :

\sf{xy=-80}

From, equation (i)

\longrightarrow \sf{(-y-11)y=-80}

\longrightarrow \sf{-y^2-11y=-80}

\longrightarrow \sf{-y^2-11y+80=0}

Divide, throughout by minus,

\longrightarrow \sf{y^2+11y-80=0}

Now, we see that the above equation is a quadratic equation with variable y.

Solve using factorization method.

\longrightarrow \sf{y^2\:+\:16y-5y-80=0}

\longrightarrow \sf{y(y+16)-5(y+16)=0}

\longrightarrow \sf{(y+16)\:\:(y-5) =0}

\longrightarrow \sf{y+16=0\:\:or\:\:y-5=0}

\longrightarrow \sf{y=-16\:\:or\:\:y=5}

So, now we have two values of y.

Let's discuss both cases.

When, y = - 16 :

Substitute, y =- 16 in equation (i)

\longrightarrow \sf{x=-y-11}

\longrightarrow \sf{x=-(-16)-11}

\longrightarrow \sf{x=16-11}

\longrightarrow \sf{x=5}

° When, y = - 16,

  • x 5
  • y - 16

When, y = 5 :

Substitute, y = 5 in equation (i),

\longrightarrow \sf{x=-y-11}

\longrightarrow \sf{x=-5-11}

\longrightarrow \sf{x=-16}

° When, y = 5,

  • x -16
  • y = 5
Answered by Vamprixussa
18

Let the 2 integers be x and y.

Given

Sum of 2 integers = -11

=> x + y = -11

Product of 2 integers = -80

=> xy = -80

Now,

x + y = -11\\=> x = -11-y

Substituting and solving we get,

(-11-y)y = -80\\-y^{2} -11y+80=0\\y^{2} + 11y-80=0\\y^{2}  +16y-5y-80=0\\y(y+16) - 5(y+16)=0\\(y-5)(y+16)=0

Now,

y - 5 = 0\\=> y = 5\\=> x = -16\\\boxed{\boxed{\bold{Therefore \ the \ 2 \ integers \ are \ 5 \ and -16}}}

                                                         

Similar questions