Math, asked by prinjaldubey, 1 year ago

the sum of two natural number is 20 while their diffrence is 4 .find the number

Answers

Answered by nathabhijit456
2

Solution

Let the two natural numbers are X and Y


According to question,

X + Y = 20 -----------(1)

X - Y = 4 --------------(2)

Now (1) +(2)=>

2X = 24

=> X = 12


Now putting the value of X in equation (1)

X + Y= 20

=> 12 + Y = 20

=> Y= 20 - 12

=> Y= 8


Therefore the two natural numbers will be 12 and 8 respectively.



prinjaldubey: thanka friend
nathabhijit456: wellcome
Answered by Anonymous
1

\Large{\textbf{\underline{\underline{According\;to\;the\;Questions}}}}

Given,

\textbf{\underline{Sum\;of\;two\;number\;is\;20}}

\textbf{\underline{Difference\;is\;4}}

Assume

Number be x and y respectively

So,

x + y = 20 ....... (1)

x - y = 4 ........... (2)

\Large{\boxed{\bigstar{{Adding\;both\;Equation :-}}}}

x + y + (x - y) = 20 + 4

x + y + x - y = 20 + 4

2x = 20 + 4

2x = 24

\rm \: \: \: \: \: \: \: \: \:x=\dfrac{\cancel{24}}{\cancel{2}}

x = 12

Hence,

\Large{\boxed{\bigstar{{First\;number= 12}}}}

\Large{\boxed{\bigstar{{Second\;number:-}}}}

x + y = 20

12 + y = 20

y = 20 - 12

y = 8

Therefore,

\huge{\boxed{\sf\:{First\;number = 12\;and\;Second\;number = 8}}}

Similar questions