Math, asked by MysteriousAryan, 4 days ago

The Sum of two no. is 6 times their geometric mean, show that no. are in the ratio (3 + 3 √2) : (3 – 2 √2)​

Answers

Answered by mathdude500
7

Appropriate Question :-

The sum of two positive numbers is 6 times their geometric mean, show that numbers are in the ratio (3 + 2 √2) : (3 – 2 √2)

\large\underline{\sf{Solution-}}

Let assume that

  • Two positive numbers be x and y.

So, According to statement,

The Sum of two no. is 6 times their geometric mean.

\rm \implies\:x + y = 6 \sqrt{xy}

can be further rewritten as

\rm :\longmapsto\:x + y = 3 \times 2 \sqrt{xy}

\rm :\longmapsto\:\dfrac{x + y}{2 \sqrt{xy} }  =3

can be rewritten as

\rm :\longmapsto\:\dfrac{x + y}{2 \sqrt{xy} }  =\dfrac{3}{1}

On applying Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{x + y + 2 \sqrt{xy} }{x + y - 2 \sqrt{xy} }  =\dfrac{3 + 1}{3 - 1}

\rm :\longmapsto\:\dfrac{ {( \sqrt{x} )}^{2}  +  {( \sqrt{y} )}^{2}  + 2 \sqrt{xy} }{ {( \sqrt{x} )}^{2}  +  {( \sqrt{y}) }^{2}  - 2 \sqrt{xy} }  =\dfrac{4}{2}

\rm :\longmapsto\:\dfrac{ {( \sqrt{x}  +  \sqrt{y} )}^{2} }{ {( \sqrt{x} -  \sqrt{y})}^{2} }  = 2

\rm \implies\:\dfrac{ \sqrt{x}  +  \sqrt{y} }{ \sqrt{x}  -  \sqrt{y} }  =  \sqrt{2}

can further rewritten as

\rm :\longmapsto\:\dfrac{ \sqrt{x}  +  \sqrt{y} }{ \sqrt{x}  -  \sqrt{y} }  = \dfrac{ \sqrt{2} }{1}

On applying for and Dividendo, we get

\rm :\longmapsto\:\dfrac{ \sqrt{x}  +  \sqrt{y}  +  \sqrt{x}  -  \sqrt{y} }{ \sqrt{x}  -  \sqrt{y}  -  \sqrt{x}  -  \sqrt{y} }  = \dfrac{ \sqrt{2}  + 1}{ \sqrt{2}  - 1}

\rm :\longmapsto\:\dfrac{ 2\sqrt{x}}{ 2\sqrt{y} }  = \dfrac{ \sqrt{2}  + 1}{ \sqrt{2}  - 1}

\rm :\longmapsto\:\dfrac{\sqrt{x}}{\sqrt{y} }  = \dfrac{ \sqrt{2}  + 1}{ \sqrt{2}  - 1}

On squaring both sides, we get

\rm :\longmapsto\:\dfrac{x}{y} = \dfrac{ {( \sqrt{2}  + 1)}^{2} }{ {( \sqrt{2}   - 1)}^{2} }

\rm :\longmapsto\:\dfrac{x}{y}  = \dfrac{2 + 1 + 2 \sqrt{2} }{2 + 1 - 2 \sqrt{2} }

\rm \implies\:\boxed{ \tt{ \:  \frac{x}{y} =  \frac{3 + 2 \sqrt{2} }{3 - 2 \sqrt{2} } \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

1. If x and y are two positive real numbers, then

Arithmetic Mean

\boxed{ \tt{ \: A =  \frac{x +y }{2} \: }}

Geometric mean (G)

\boxed{ \tt{ \: G =  \sqrt{xy} \: }}

3. Harmonic mean (H)

\boxed{ \tt{ \: H =  \frac{2xy}{x + y}}}

2. Between any two distinct positive real numbers then

\boxed{ \tt{ \:  {G}^{2}  = A H \: }}

and

\boxed{ \tt{ \: A > G > H \: }}

Similar questions