Math, asked by rtyadav1948, 2 months ago

The sum of two number is 916 .if 27 is their HCF then .
the number are​

Answers

Answered by mathdude500
2

\large\underline\blue{\bold{Given \:  Question  \tt (correct \: statement) :-  }}

The sum of two number is 216. If 27 is their HCF, then the numbers are

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt\:\huge \red{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\tt{sum \: of \: two \: numbers \: is \: 216} \\ &\tt{HCF \:  = 27} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\tt{the \: two \: numbers}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

Concept Used:-

  • If HCF of two numbers X & Y is k, then the numbers can be written as ka & kb respectively such that a & b are co-prime to each other.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Let -  \begin{cases} &\tt{first \: number \: be \: a} \\ &\tt{second \: number \: be \: b} \end{cases}\end{gathered}\end{gathered}

 \tt \: Now,  \: it  \: is \:  given  \: that \:  HCF(a, \:  b)  \: =  \: 27

 \tt \therefore \: a \:  =  \: 27x \:  \:  \: and \:  \: b \:  =  \: 27y

 \tt \: where \: x \: and \: y \: are \: co - prime \: to \: each \: other.

─━─━─━─━─━─━─━─━─━─━─━─━─

 \tt \: \begin{gathered}\red{ \tt \: According \: to \: statement}\end{gathered}

\tt\implies \:a \:  +  \: b \:  =  \: 216

\tt\implies \:27x \:  +  \: 27y \:  =  \: 216

\tt\implies \:27(x + y) = 216

\tt\implies \:x \:  +  \: y \:  =  \: 8

 \tt \: So,  \: we  \: have  \: two \:  conditions  \: with  \: us  \: now.  \\  \tt \: (a + b)  \: is  \: 8  \: and  \: a  \: and  \: b  \: are \:  co-prime. \:  \:  \:

 \tt \implies \: Possible \: pairs  \: of \:  a  \: and \:  b  \: are(1,7),  \: (3,5)</p><p></p><p>

 \tt \: Thus \:  possible  \: pairs  \: of \:  the \:  numbers  \: are

 \tt  \large\boxed{ \tt(27, \: 189), \: (81, \: 135)}

─━─━─━─━─━─━─━─━─━─━─━─━─

Note :-

Statement is wrong as 916 is not divisible by 27. It must be a multiple of 27, so might it be 216 or 918

☆ If it is 918, then x + y = 34

☆ so possible pairs are (3, 31), (5, 29), (11, 23), (17, 17)

Similar questions