Math, asked by preetitawri2465, 1 month ago

the sum of two number is minus 23 upon 9 if one of the number is 5.9 what is the other number​

Answers

Answered by armygirl0024
3

Let the other number be x.

Then,

5.9 + x =  \frac{23}{9}  \\  \\ x =  \frac{23}{9} - 5.9 \\  \\ x = \frac{23}{9} -  \frac{59}{10}  \\  \\ x =  \frac{230 - 531}{90}  \\  \\ x =  \frac{ - 301}{90} \: answer

Answered by TwilightShine
5

Answer :-

  • The other number is-761/90.

To find :-

  • The other number.

Step-by-step explanation :-

Let the other rational number be "x".

Given that :-

  • The sum of the two numbers is -23/9.

Therefore,

 \dashrightarrow \tt5.9 + x =  \dfrac{ - 23}{ \:  \:  \:  \: 9}

Converting 5.9 into fraction,

 \dashrightarrow\tt \dfrac{59}{10}  + x =  \dfrac{ - 23}{ \:  \:  \:  \: 9}

 \dashrightarrow\tt x = \dfrac{ - 23}{ \:  \:  \:  \: 9}  -  \dfrac{59}{10}

 \dashrightarrow\tt x =  \dfrac{ (- 23 \times 10) - (59 \times 9)}{90}

 \dashrightarrow \tt x = \dfrac{ - 230 - 531}{90}

 \dashrightarrow\tt x = \dfrac{ - 761}{ \:  \:  \: 90}

-----------------------------------------------------------

V E R I F I C A T I O N -

  • To check our answer, let's add up -761/90 and 5.9 and see whether we get -23/9.

 \\

 \dashrightarrow\sf5.9 +  \dfrac{ - 761}{ \:  \:  \:  \: 90}

Converting 5.9 into fraction,

  \dashrightarrow\sf\dfrac{59}{10}  +  \dfrac{ - 761}{ \:  \:  \: 90}

  \dashrightarrow\sf\dfrac{(59 \times 9) + ( - 761 \times 1)}{90}

  \dashrightarrow\sf\dfrac{531 -  761}{90}

 \dashrightarrow \sf\dfrac{ - 230}{ \:  \:  \:  \: 90}

Cutting off the zeroes,

\dashrightarrow \sf \dfrac{ - 23}{ \:  \:  \:  9}

 \\

LHS = RHS.

Hence verified!

________________________________

Similar questions