Math, asked by nikhilschampion, 9 months ago

the sum of two numbers is 150.the double of the first number and five time of the second number make 450. find the numbers.

Answers

Answered by firdousnida05
11

Answer:

sum of two numbers is 150

Let the number be 10x + y

so 10X + Y = 150 ..........eq 1

Now

Double the first number = 2(10x)

Five times second number = 5(y)

20X + 5y = 450 ......eq 2

Now Subtract.eq 1 and 2

( 10X. + Y = 150) * 3

20x + 5y = 450

Multiply eq 1 with 2

20x + 2y = 300

- 20x - 5y = 450

- 3y = - 150

y = 150/3 = 50

Now subsititute y value in eq 1

10X + 50 = 150

10x = 150-50

x = 100/10 => 10

Y = 50 X = 10

verification :- 10(10) + 50 = 150

Answered by Anonymous
1

The two numbers are 100 and 50

Given : The sum of two numbers is 150. The double of the first number and five time of the second number make 450.

To find : The numbers.

Solution :

We can simply solve this mathematical problem by using the following mathematical process. (our goal is to determine the two numbers)

Let, the first number = x

and, the second number = y

According to the data mentioned in the question,

x + y = 150 ...(1)

And,

(2 × x) + (5 × y) = 450

2x + 5y = 450 ...(2)

Now, multiplying the equation (1) with 2 :

2 × (x+y) = 2 × 150

2x + 2y = 300 ...(3)

Now, subtracting equation (3) from equation (2) :

‎ ‎ ‎ ‎ 2x + 5y = 450

(-)‎ 2x + 2y = 300

‎ ‎ ‎ - ‎ ‎ ‎ ‎ ‎-‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎ ‎ ‎-

____________________

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎5y-2y = 450-300

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ 3y = 150

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ y = 150/3

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ y = 50

Now, substituting the value of y in equation (1)

x + 50 = 150

x = 150 - 50

x = 100

So, the first number = x = 100

The second number = y = 50

(These will be considered as the final result.)

Hence, the two numbers are 100 and 50

#SPJ3

Similar questions