Math, asked by dharuman30, 1 month ago

The sum of two numbers is 1560 and their HCF is 65. Find the total number of such pair
of numbers possible.​

Answers

Answered by mathdude500
14

\large\underline{\sf{Solution-}}

Given that,

  • Two number have HCF as 65.

\begin{gathered}\begin{gathered}\bf\: Let-\begin{cases} &\sf{first \: number \: be \: 65x} \\ &\sf{second \: number \: be \: 65y} \end{cases}\end{gathered}\end{gathered}

where x and y are coprime numbers ( means HCF of x and y is 1).

According to statement,

\rm :\longmapsto\:65x + 65y = 1560

\rm :\longmapsto\:65(x + y) = 1560

\rm :\longmapsto\:x + y =  \cancel{\dfrac{1560}{65}} \:  = 24

\rm :\implies\:x + y = 24

Hᴇɴᴄᴇ,

➢ Possible pair of numbers so that x and y are coprime and their sum is 24 are shown in the below table :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 1 & \sf 23 \\ \\ \sf 5 & \sf 19 \\ \\ \sf 7 & \sf 17\\  \\ \sf 13 & \sf 11 \\ \\ \end{array}} \\ \end{gathered}

Hᴇɴᴄᴇ,

➢ Possible pair of numbers are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 65 & \sf 1495 \\ \\ \sf 325 & \sf 1235 \\ \\ \sf 455 & \sf 1105\\  \\ \sf 715 & \sf 845 \\ \\ \end{array}} \\ \end{gathered}

Hᴇɴᴄᴇ,

➢ Total number of possible pairs is 4.

Additional Information :-

If x and y are two natural numbers having hcf 'h' and lcm 'l', then following hold :-

\:\rm  \: \longmapsto\:x \times y = h \times l

\rm :\longmapsto\:h \:  \leqslant x \: or \: y

\rm :\longmapsto\:l \geqslant x \: or \: y

\rm :\longmapsto\:h \leqslant x \: or \: y \:  \leqslant l

\rm :\longmapsto\:h \: is \: a \: factor \: of \: l

Answered by sudhirkchaurasia247
3

Answer:

x = 260/11 , y = 16900/11

For expaination see the above image.

Attachments:
Similar questions