The sum of two numbers is 16 and the sum of their squares is 113. find the numbers
Answers
Answered by
8
Let x be one of these numbers and y be the other.
x+y =15 --------------- Eq(1)
x^2 + y^2 = 113 ---- Eq(2)
From Eq(1): y=15-x ----------Eq(3)
Sub Eq(3) into Eq(2):
x^2 + (15-x)^2 = 113
x^2 + (225 - 30x + x^2) = 113 ----- Using (a-b)^2 = a^2-2ab+b^2
x^2 + 225 - 30x + x^2 = 113
x^2 + x^2 - 30x + 225 -113 = 0
2x^2 - 30x + 112 =0
x^2 - 15x + 56 = 0
(x-7)(x-8) = 0
x= 7 or x = 8
When x=7, y=15-7 =8
When x=8, y=15-8 =7
Therefore, the 2 numbers are 7 & 8
x+y =15 --------------- Eq(1)
x^2 + y^2 = 113 ---- Eq(2)
From Eq(1): y=15-x ----------Eq(3)
Sub Eq(3) into Eq(2):
x^2 + (15-x)^2 = 113
x^2 + (225 - 30x + x^2) = 113 ----- Using (a-b)^2 = a^2-2ab+b^2
x^2 + 225 - 30x + x^2 = 113
x^2 + x^2 - 30x + 225 -113 = 0
2x^2 - 30x + 112 =0
x^2 - 15x + 56 = 0
(x-7)(x-8) = 0
x= 7 or x = 8
When x=7, y=15-7 =8
When x=8, y=15-8 =7
Therefore, the 2 numbers are 7 & 8
Answered by
35
Answer:
Step-by-step explanation:
Given :-
The sum of two numbers is 16 and the sum of their squares is 113.
To Find :-
The Numbers
Solution :-
Let the 1st number be x .
And the second number be (15 - x).
According to the Question,
⇒ x² + (15 - x)² = 113
⇒ x² + 225 + x² - 30x = 113
⇒ 2x² - 30x + 112 = 0
⇒ x2 - 15x + 56 = 0
⇒ (x - 7) (x - 8) = 0
⇒ x = 7 or x = 8.
Hence, the required numbers are 7 and 8.
Similar questions