Math, asked by yashpathakyash1704, 1 year ago

the sum of two numbers is 21.five times the first number added to 2 times the second number is 66.find the number

Answers

Answered by tanushkapakhale1Riya
14

Answer:

the numbers are 8 and 31

Step-by-step explanation:

let the first number he' x' and the the second number be 'y'

By the first Condition:-

x+y=21___________(1)

by the second condition:-

5x+2y=66__________(2)

multiply equation (1) by '2'

therefore,

2x+2y=42_______(3)

subtracting equation (3)from(2)

5x+2y=66__________(2)

2x+2y=42_______(3)

___________

3x=24

therefore x=24/3 i.e

x=8

put x=8 in equation (1)

x+y=21

8+y=21

y=21-8

y=13

therefore the numbers are 8 and13

pls mark me as brainliest

hope it helps

Answered by Sauron
28

\mathfrak{\large{\underline{\underline{Answer}}}}

The Numbers are 8 and 13.

\mathfrak{\large{\underline{\underline{Step-by-step\: Explanation}}}}

Given :

Sum of the numbers = 21

5 times the first number added to 2 times the second number = 66

To find :

The Numbers

Solution :

\textbf{\small{\underline{Let the Numbers be as -}}}

  • One as x
  • Second as (21 - x)

\textbf{\small{\underline{According to the Question - }}}

5 times the first number added to 2 times the second number = 66

\green{\boxed{\green{\boxed{\red{\sf{5x + 2(21 - x) = 66}}}}}}

\sf{\implies} \: 5x + 2(21 - x) = 66 \\ \\ \sf{\implies} \: 5x + 42 - 2x = 66 \\ \\ \sf{\implies} \: 3x  + 42 = 66 \\ \\ \sf{\implies} \: 3x = 66 - 42 \\ \\ \sf{\implies} \: 3x = 24 \\  \\ \sf{\implies} \: x =  \frac{24}{3} \\  \\  \sf{\implies} \: x = 8

One Number = 8

\rule{300}{1.5}

Value of (21 - x)

\sf{\implies} \: 21 - 8 \\ \sf{\implies} \: 13

Second Number = 13

\therefore The Numbers are 8 and 13.

\rule{300}{1.5}

\mathfrak{\large{\underline{\underline{Verification :-}}}}

Check whether 8 and 13's sum is 21 or not.

\sf{\implies} \: 8 + 13 = 21 \\ \sf{\implies} \: 21 = 21 \\ \sf{\implies} \: LHS = RHS

Place the value of x in the equation and check whether both the sides are equal.

\sf{\implies} \: 5(8) + 2(21 - 8) = 66 \\ \sf{\implies} \: 40 + 42 - 16 = 66 \\ \sf{\implies} \: 82 - 16 = 66 \\ \sf{\implies} \: 66 = 66 \\ \sf{\implies} \:LHS = RHS

\therefore The Numbers are 8 and 13.

Similar questions