Math, asked by RohanRaju, 5 months ago

The Sum of two numbers is 2490. If 6.5% of one number is equal to 8.5% of the other, Find the Numbers.​

Answers

Answered by itsesarthak
0

Answer:

itis the correct answer hope itwill help

Attachments:
Answered by thebrainlykapil
55

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • The Sum of two numbers is 2490. If 6.5% of one number is equal to 8.5% of the other, Find the Numbers.

 \\

\large\underline{ \underline{ \sf \maltese{ \: Assume:- }}}

  • Let the First Number be x
  • Second Number = 2490 - x

 \\

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

  • Sum of Two Numbers = 2490

  • 6.5% of the First Number  \bf \: \frac{6.5}{100}  \times  \: x \:  =  \:   \boxed{ \frac{65x}{1000} }
  • 8.5% of the Second Number  \bf  \: \frac{8.5}{100}  \times  \: (2490 - x)\:  =  \:   \boxed{ \frac{85}{1000}(2490 - x) }

It is given that 6.5% of the First Number is equal to 8.5 of the other

 \\

\large\underline{ \underline{ \sf \maltese{ \: Solution :- }}}

 \begin{gathered}   \begin{gathered}\underline  {\boldsymbol{ ☯  \: According\: to \:the\: Question  \: ☯}} \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\:    \frac{65x}{1000}  \:  =  \:  \frac{85}{1000} (2490 - x) }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

Multiplying both Sides by 1000

\qquad \quad {:} \longrightarrow \sf{\sf{65x \:  =  \: 85(2490 - x) }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{65x \:  =  \: 2490  \: \times  \: 85  \:  -  \: 85x}}\\

\qquad \quad {:} \longrightarrow \sf{\sf{65x \:  +  \: 85x \:  =  \: 2490  \: \times  \: 85  \:  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{150x \:  =  \: 2490  \: \times  \: 85  \:  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{x \:  =  \:  \frac{2490 \:  \times  \: 85}{150}   }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{x \:  =  \:  1411 }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{x \: = \: 1411    }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

  • First Number = x = 1411
  • Second Number = 2490 - 1411 = 1079

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese</strong><strong>\</strong><strong>g</strong><strong>r</strong><strong>e</strong><strong>e</strong><strong>n</strong><strong>{ \: </strong><strong>Verfication\</strong><strong>:</strong><strong> </strong><strong>1</strong><strong>\</strong><strong>:</strong><strong> </strong><strong> :- }}}

 \underbrace\red{\boxed{ \sf \purple{ 6.5  \%  \: of \: first \: number}}}

\qquad \quad {:} \longrightarrow \bf{\bf{6.5\% \: of \: first \: number \:  =  \:  \frac{6.5}{100}  \times 1411 }}\\

\qquad \quad {:} \longrightarrow \bf{\bf{6.5\% \: of \: first \: number \:  =  \:  \frac{65 \:  \times  \: 1411}{1000}  }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{ 6.5\% \: of \: first \: number \:  =  \:  \frac{91715}{1000}  }}}\\ \\

 \underbrace\red{\boxed{ \sf \purple{ 8.5  \%  \: of \: first \: number}}}

\qquad \quad {:} \longrightarrow \bf{\bf{8.5\% \: of \: first \: number \:  =  \:  \frac{8.5}{100}  \times 1079 }}\\

\qquad \quad {:} \longrightarrow \bf{\bf{8.5\% \: of \: first \: number \:  =  \:  \frac{85 \:  \times  \: 1079}{1000}  }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{ 8.5\% \: of \: first \: number \:  =  \:  \frac{91715}{1000}  }}}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

Clearly , 6.5% of the First Number is equal to 8.5 of the Second Number , which is the same as given in the Problem

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese\green{ \: Verfication\: 2\:  :- }}}

 \quad {:} \longrightarrow \bf{\bf{Sum \: of \: First \: and \: Second \: Numbers \: = \: 2490 }}\\

 \quad {:} \longrightarrow \bf{\bf{1411\: + \: 1079  \: = \: 2490 }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{ 2490 \: = \: 2490 }}}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ First \: Number \: = \underline {\underline{ 1411}}}\\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ Second \: Number \: = \underline {\underline{ 1079}}}\\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions