Math, asked by zyanhawkman1, 10 days ago

The sum of two numbers is 53 and the difference is 14.5. What is the digit at the units place of the smaller number.​

Answers

Answered by ImperialGladiator
14

Answer:

9

Explanation:

Let the numbers be x and y.

According to the question,

 \rm \bullet \:  Sum \:o f \: the \: numbers :  -  \\   \rm \: \implies \: x + y = 53\bf . . . . (i)

 \rm \bullet \:  Difference \:o f \: the \: numbers :  -  \\   \rm \: \implies \: x  - y = 14.5\bf . . . . (ii)

Subtracting eq. (i) by (ii) :-

\rm \: \: \: \: \: x + y = 53 \\ \tiny{( - )}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \rm{  \:  \:  \:  \:  \underline{x - y = 14.5}} \\ \rm \implies \: 2y = 38.5\\  \rm \implies \:y =  \dfrac{38.5}{2} \\  \rm \implies \:y = 19.25

Substituting y in eq.(i) :-

 \rm \implies \:x + y = 53

 \rm \implies \:x + 19.25 = 53

 \rm \implies \: x = 53 - 19.25

 \rm \implies \: x = 33.75

Hence, the numbers are 19.25 and 33.75

Digit at the unit place of smaller number i.e., 19.25 is 9

Answered by dasmirasree6
3

Let one number be x and another be y

Given, x+y =53........... (1)

x-y =14.5......... (2)

By adding equation 1 and equation 2, we get

x+y+x-y =53+14.5

or, 2x =67.5

or, x=67.5/2

or, x=33.75

  • Now substituting the value of x in equation 1, we get

33.75+y =53

y =53-33.75

y = 19.25

Ans:- 9 is the unit place digit.

Similar questions