Math, asked by renuka8389, 1 year ago

the sum of two numbers is 64 one of the number is 8 less than the other number find the numbers​

Answers

Answered by TRISHNADEVI
2

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \:  \: Given \:  \: }} \\  \\  \text{ \pink{The sum of the two numbers = 64}} \\  \text{ \pink{One number is less than the another number.}} \\  \\  \underline{ \mathfrak{ \:  \: To  \:  \: find :  \to \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \text{ \blue{The numbers = ?}} \\  \\ \underline{ \mathfrak{ \:  \: Suppose, \:  \: }} \\  \\  \text{ \red{The bigger number is = x }} \\ \text{ \red{The smaller number is = y}}

 \underline {\bold{ \:  \: A.T.Q., \:  \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \red{x + y = 64} \:  \:  -  -  -  -  -  > (1)} \\  \\   \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{x - 8 = y } \\  \tt{ \implies \: \red{ x - y = 8}  \:  \:  -  -  -  -  - (2)}

 \tt{ \therefore \: (1) + (2) \implies \: 2x = 72} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \implies \:x =  \frac{72}{2} } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \tt{  \therefore \: \red{ x = 36}}

 \underline{ \mathfrak{ Again, \: }}\\  \\ \tt{ \therefore \: (1)  -  (2) \implies \: 2y = 56} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \implies \:y =  \frac{56}{2} } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \tt{  \therefore \: \red{ y = 28}}

 \sf{  \therefore \:  \:  The  \:  \: numbers \:  \:  are :  \:  \:  \red{36} \:  and \:  \red{ 28}.}

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: VERIFICATION \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \:  \: We \:  \:  have, \:  \: }} \\  \\  \text{ \red{The bigger number = 36}} \\  \text{ \red{The smaller number = 28}} \\  \\   \therefore \: \text{Sum of the numbers =(  \red{36 +28 }}) \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \text{  = \red{ 64}} \\  \\ \underline{ \mathfrak{ Again, \: }}\\  \\  \text{Bigger number -  8 =  \red{36 - 8}} \\  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \text{=  \red{28}} \\  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \text{ = Smaller number} \\  \\   \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ \bold{ \:  \: Hence \:  \:  verified. \:  \: }}

Answered by BrainlySamaira
14

Answer:

\large\star\underline\textsf{ The number are : 36 and 28 }

\huge\underline\textsf{Explantion:- }

______________________________________

\</u><u>star</u><u>\underline\textsf{</u>s<u>u</u>p<u>p</u><u>o</u><u>s</u><u>e</u><u>:- }

\star\underline\textsf{The bigger number is = \red A}

\star\underline\textsf{The smaller number is = \red B}

______________________________________

\large\star\underline\textsf{Using Identities :- }

\boxed{\bf(A + B) { }^{2}  = A {}^{2}  + 2AB + B {}^{2}}

\boxed{\bf(A - B) {}^{2}  = a {}^{2}  - 2AB + B {}^{2}}

\large\star\underline\textsf{A.T.Q, }

\leadsto\sf A + B = 64 -  -  -  - &gt; 1.identity

\leadsto\sf A -  8 = B

\leadsto\sf A - B = 8 -  -  -  -  &gt; 2.identity

______________________________________

\leadsto\sf(1) + (2) = 2a = 72

\leadsto\sf A =  \frac{72}{2}  \\

\leadsto\bf A = 36

______________________________________

\star\underline\textsf{Now do again with 2.identity}

\leadsto\sf(1) - (2) = 2B = 56

\leadsto\sf B =  \frac{56}{2}  \\

\leadsto\sf B = 28

\large\star\underline\textsf{ The number are : \red3\red6 and \orange2\orange8 }

\huge\underline\textsf{Verification:- }

\small\underline\textsf{We have }

\bullet\textsf{ the bigger number=36}

\bullet\textsf{ the smaller number=28}

______________________________________

\therefore\textsf{sum of number=[36+28]}

\textsf{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: = 64}

\star\underline\textsf{now again, }

\small\underline\textsf{bigger number -8 = 36-8}

\textsf{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: = 28}

\textsf{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: = smaller number }

\huge\underline{</p><p>{\mathbb{\purple{HENCE\:VERIFIED. }}}}

\quad\boxed{\begin{minipage}{15em}{\large\underline\textbf{Some identitys }}} \\ \\</p><p></p><p>(A+B)^2=a^2+2ab+b^2 — — — —&gt; 1.identity\\ </p><p></p><p>(a-b) ^2=a^2=a^2-2ab+b^2 — — — —&gt;2.identity\\</p><p>(a+b)(a-b) =a^2-b^2— — — —&gt;3.identity \\</p><p></p><p>\end{minipage}}

Similar questions