Math, asked by khansaraheem16, 4 months ago

The sum of two numbers is 72. If twice the smaller is 3 more than the greater,
find them.​

Answers

Answered by siddharth0105
1

Answer:

X=47, y=25

Step-by-step explanation:

let the numbers he X and y, ATQ stands for according to Question. X>Y

Attachments:
Answered by TRISHNADEVI
1

ANSWER :

 \\

★ If the sum of two numbers is 72 and twice the smaller is 3 more than the greater, then the numbers are 25 and 47.

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

SOLUTION :

 \\  \\

Given :-

 \\

  • Sum of the two numbers is 72

  • Twice of the smaller number is 3 more than the greater.

 \\

To Find :-

 \\

  • The numbers = ?

 \\

Method 1 :-

 \\

Suppose,

 \\

  • The smaller number = x

  • The greater number = y

 \\

According to first condition,

 \\

  \:  \:  \:  \: \bigstar \:  \:  \: \sf{ \large{x + y = 72 \:  \:  -  -  -  -  -  > (1)}}

 \\

According to second condition,

 \\

 \:  \:  \:  \:  \bigstar \:  \:  \:  \sf{ \large{2x = y + 3  \:  \:  -  -  -  -  -  > (2)}}

 \\ Now,

 \\

  \:  \:  \:  \:  \:  \:  \sf{ \large{(1) \implies \:  x + y = 72}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \:  \:  \:  \:  \:  \:   \sf{ \large{ \implies \:   y = 72 - x \:  \:  -  -  -  -  > (3) }}

 \\

Replacing y from eq. (3) in eq. (2) :-

 \\

 \sf{ \large{(2) \implies \:  2x = y + 3}} \:  \:  \:  \:  \:  \:  \:  \:  \\ \\   \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \: \sf{ \large{ \implies \:  2x = (72 - x) + 3 }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \large{ \implies \: 2x = 72 - x + 3}} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \large{ \implies \:  2x + x = 72 + 3 }} \\  \\  \sf{ \large{ \implies \: 3x = 75}} \:  \:  \:  \:  \:  \\  \\  \sf{ \large{ \implies \:  x = \dfrac{75}{3}}} \:  \:  \:  \:  \:   \\  \\   \sf{ \large{ \therefore \:  \:  \underline{ \: x = 25  \: }}}

 \\

Putting the value of x in eq. (3) :-

 \\

 \sf{ \large{(3)\implies \: y = 72 - x}} \:  \:  \\  \\   \:  \:  \:  \:  \:  \:   \:  \sf{ \large{\implies \: y = 72 - 25}} \\  \\   \:  \:  \:  \:  \:  \: \sf{ \large{ \therefore \:  \:  \underline {\:  y = 47  \:}}}

 \\

  • The smaller number, x = 25

  • The greater number, y = 47

★ Hence, the numbers are : 25 and 47.

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

Method 2 :-

 \\

Suppose,

  • The smaller number = a

 \\

According to first condition,

  • The greater number = 72 - a

 \\

According to second condition,

 \\

 \bigstar \:  \: \sf{ \large{2a = (72 - a) + 3  \:  \:  -  -  -  -  -  > (1)}}

 \\

Solving eq. (1) :-

 \\

 \:  \:  \:  \:  \sf{ \large{(1) \implies \:  2a = (72 - a) + 3 }} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \large{ \implies \: 2a = 72 - a + 3}} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \large{ \implies \:  2a + a = 72 + 3 }} \\  \\  \sf{ \large{ \implies \: 3a = 75}} \:  \:  \:  \:  \:  \\  \\  \sf{ \large{ \implies \:  a = \dfrac{75}{3}}} \:  \:  \:  \:  \:   \\  \\   \sf{ \large{ \therefore \:  \:  \underline{ \: a = 25  \: }}}

 \\

 \sf{ \large{ \therefore \:  \: The  \:  \: greater \:  \:  number = 72 - a }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf{ \large{= 72 - 25 }} \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{\large{=  \underline{ \: 47 \: }}}

 \\

  • The smaller number = 25

  • The greater number = 47

★ Hence, the numbers are : 25 and 47.

Similar questions