Math, asked by kashishkumaridp, 3 months ago

the sum of two numbers is 74 the first number is 10 more then the other number what are the numbers​

Answers

Answered by Ladylaurel
9

Answer :-

  • The first number is 42
  • The second number is 32.

Step-by-step explanation:

Assumption:

Let us assume the first number ( 10 more than the other ) and the second number as (x+10) and (x) respectively.

Therefore,

  • (x + 10) + (x) = 74

( x + 10 ) + ( x ) = 74

x + 10 + x = 74

2x + 10 = 74

2x = 74 - 10

2x = 64

x = 64/2

x = 32

The value of x is 32.

∴ The numbers are :-

  • (x+10) = (32+10) = 42
  • (x) = 32

Hence, The numbers are 42 and 32.

Now, Verification

  • (x+10) + (x) = 74

Putting the value of numbers, [L.H.S] :-

(x+10) + (x)

42 + 32

74

Therefore, L.H.S and R.H.S = 72

Hence, Verified!

Answered by IamJaat
47

 \large {\frak {\underline {\dag \; \; Given :}}}

  • Sum of two numbers = 74
  • First number is 10 more than the other.

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

 \large {\frak {\underline {\dag \; \; To \; find :}}}

  • Both the numbers.

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

 \large {\frak {\underline {\dag \; \; Let's \; Assume :}}}

  • Let the other number be x
  • First number is 10 more than the other number. So, the number = x + 10

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

 \large {\frak {\underline {\dag \; \; Solution :}}}

 \;\; \; \; \; \; \; \bigstar {\textbf {\textsf {\underline { According \; to \; the \; question :}}}}

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎ : \implies \sf { (x + 10) + x = 74}

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎ : \implies \sf { 2x + 10 = 74}

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎: \implies \sf { 2x = 74 - 10}

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎: \implies \sf { 2x = 64}

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎:\implies \sf { x = \dfrac {64}{2}}

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎: \implies \sf { x = 32}

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

Therefore,

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ \to \sf { First ~number = x + 10 = 32+ 10 = 42}

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ \to \sf { Other ~ number = x = 32}

Similar questions